Author Archives: Adam Hasik

Bad Neighbors

Image Credit: ksblack99, Public Domain, Image Cropped

Exposure to potentially cannibalistic conspecifics induces an increased immune response (2020) Murray et al., Ecological Entomology, https://doi.org/10.1111/een.12806

The Crux

Plasticity is a powerful force in nature that allows organisms to change the way they look, the way they act, and even their own physiological processes. Prey species commonly exhibit plastic responses when they are exposed to predators, and recent studies have shown that these predator-induced effects can affect the immune function of the prey species. Because of this, predators have the potential to modify disease dynamics, either increasing disease/parasite infection by reducing the prey’s immune function, or decreasing disease by increasing immune function.

Interestingly, predators are not the only organisms that consume prey species. Some prey species eat both members of their own trophic level (an intraguild predator, see Did You Know) and members of their own species (a cannibal). Because they act like a predator (by eating a prey organism), there’s a possibility that these cannibalistic individuals may have the same effect on their potential victims. Today’s authors used larval dragonflies to investigate that exact question.

Read more

The Healthy Male Wins the Mate

Guest post by Miguel Gómez-Llano (Image Credit: Sharp Photography, CC BY-SA, Image Cropped)

Male-Male Competition Causes Parasite-Mediated Sexual Selection for Local Adaptation (2020) Gómez-Llano et al., The American Naturalist, https://doi.org/10.5061/dryad.cjsxksn35

The Crux

The natural world changes constantly: temperatures fluctuate, predators and parasites enter into the ecosystem, and the landscape itself could change (looking at you, Yellowstone). These changes mean that organisms are under a constant pressure to adapt to local conditions. Due to this pressure, one of the biggest questions for conservation biology is if species are able to adapt fast enough to keep up with environmental changes. Sexual selection is thought to promote rapid adaptation to such environmental changes, but most of the evidence comes from laboratory studies.

Our study looked at adaptation to one of nature’s ubiquitous pressures: parasitism. We were interested in the strength of selection by parasites and if there was subsequent adaptation by the host in a wild population.

Read more

Pride in Science

Image credit: Joint Base Langley-Eustis,Va, CC0 1.0

Scientists face many challenges during their professional lives, but one prevalent problem that doesn’t get the attention that it deserves is that of the LGBTQIA+ (hereafter “queer”) community and the lack of inclusiveness in science. In honor of Pride Month, I wanted to take the time to highlight some of the challenges facing queer scientists and what we can do as a society to better ourselves.

Read more

An Ugly Truth: Pandemics and the Livestock Trade

Image Credit: Hippopx, CC0 1.0, Image Cropped.

Ever since COVID-19 hit, things have changed for people the world over. Many governments enforced lockdowns on their citizens, certain products are harder to get than before (looking at you toilet paper hoarders), and there has been an enormous and terrible loss of life. A wet market in China is suspected to be the source of the outbreak, but one thing to consider as we move forward is that the risk of another outbreak from other animal markets remains high.

Read more

Don’t Compete If You Don’t Want to Get Eat(en)

Image Credit: Judy Gallagher, CC BY 2.0, Image Cropped

Predators weaken prey intraspecific competition through phenotypic selection (2020) Siepielski, Hasik et al., Ecology Letters, https://doi.org/10.1111/ele.13491

The Crux

We are all familiar with predator-prey relationships in nature, those in which one organism (a predator) kills and consumes another (the prey). Besides these direct effects on prey via consumption, predators can also impose indirect effects on their prey. An indirect effect is one in which the predator changes some aspect of the prey, such as their behavior or the way that they look, but these changes are brought about just by the predator being around. These predator-mediated effects are known to affect the relationships between prey organisms themselves, such as how prey organisms compete with one another, whether its for food, mates, or other resources.

Predators are known to affect how active their prey are, and this selection on activity results in a trade-off between how much prey can grow and their risk of predation. Being more active can allow you to find and eat more food, but that also means that a potential predator is more likely to see you. Today’s paper used larval damselflies and their fish predators to study how selection of fish on their damselfly prey based on the damselfly activity rates affected competition between the damselflies.

Read more

Protection from Two Enemies with One Defense

Image Credit: Connor Long, CC BY-NC-SA 3.0, Image Cropped

Of poisons and parasites—the defensive role of tetrodotoxin against infections in newts (2018) Johnson et al., Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.12816

The Crux

Many organisms in nature produce powerful (and sometimes deadly) toxic substances, often taken as evidence that prey evolved chemical defenses against predators. Interestingly, these chemical defenses are deadly not only to predators, but also to parasites. This complementary defense, in addition to the ubiquity of parasites themselves, indicate that parasites may have had a hand in the evolution of host toxicity.

One particularly potent toxin found in the animal kingdom is tetrodotoxin (TTX). It can cause paralysis, difficulty with breathing, and even death in some cases. Newts in the genus Taricha are notorious for having high concentrations of TTX in their skin and eggs, and this has long been thought to have evolved as a defense against predators. In particular, Taricha newts and garter snakes (Thamnopholis spp.) are a classic example of arms-race dynamics (see Did You Know). Despite this relationship, newt toxicity and snake resistance to the toxin don’t always match up perfectly in nature, suggesting that other factors may influence newt toxicitiy. The goal of today’s study was to study parasitic infection and compare it to variation in toxicity among two newt species, the rough-skinned newt (T. granulosa) and the California newt (T. torosa).

Read more

The Enemy of My Competitor is My Friend

Image Credit: Andreas Kay, CC BY-NC-SA 2.0, Image Cropped

Specifc parasites indirectly influence niche occupation of non‑hosts community members (2018) Fernandes Cardoso et al., Oecologia, https://doi.org/10.1007/s00442-018-4163-x

The Crux

One of the oldest questions in community ecology is why do some species seem to co-occur with one another, while others don’t? Two hypotheses have been put forward to explain why this happens: environmental filtering and niche partitioning. Environmental filtering is when some abiotic feature of a given environment – such as the temperature or oxygen levels – prohibits some species from ever living in the same location as another. A very broad (and overly simplistic) example of this is that you would never see a shark living in the same habitat as a lion, because the shark needs to live in the ocean and the terrestrial Savannah of Africa where lions are found “filter” the sharks out. Niche partitioning, on the other hand, involves species adapting to specialize on a given part of the environment, thus lessening competition for a niche by dividing it up. You can see this with some of Darwin’s Finches, which adapted differently-sized beaks to feed on differently-sized seeds. They all still eat seeds, but they are not eating the same seeds. 

Interactions with other organisms, either direct or indirect, can also influence which species co-occur. If one species can out-compete another, they likely won’t be able to co-occur because the better competitor will take most of the resources, forcing the other out. This can all change, however, if a third organism affects the competitive ability of the superior competitor, allowing the inferior competitor to persist despite its lesser ability.

Today’s authors used two spider species to study community assembly and how it may be affected by a fungal parasite. Chrysso intervales (hereafter inland spiders) builds webs further away from rivers, while Helvibis longicauda builds webs close to the river (hereafter river spiders). Interestingly, only the river spiders are infected with the fungal parasite, thus they investigated how interactions between the two spiders may be mediated by this fungal parasite. Read more

Biotic Interactions: Not All They’re Cracked Up to Be?

Image Credit: Danyell Odhiambo/ICRAF, CC BY-NC-SA 2.0

Local Adaptation to Biotic Interactions: A Meta-analysis across Latitudes (2020) Hargreaves et al., The American Naturalist, https://doi.org/10.1086/707323

The Crux

Local adaptation is a process whereby individuals native to a given area are better-suited to live in that environment than foreign individuals, and those local individuals will out-compete foreign individuals. This adaptation to local conditions can range from a predator that is better at finding and catching prey, to a plant that is more efficient than another at taking nutrients from the soil, or to a host that has evolved defenses against a local parasite. Despite a wealth of literature and science that has been dedicated to the study of local adaptation, it is not clear what it is about the environment that commonly drives it.

Early studies of local adaptation measured abiotic (non-living) factors like temperature and the amount of light, but this ignores the fact that all environments include biotic factors like other species and any interactions with them. A small amount of studies have shown that biotic interactions (i.e. interactions with other species) can drive local adaptation, but there isn’t a consensus on how common of a pattern that is. Today’s authors used a meta-analysis of previous studies to test how these biotic interactions affect local adaptation. Read more

The How and Why of Climate-Mediated Extinction

Image Credit: Dreamy Pixel, CC BY 4.0

Recent responses to climate change reveal the drivers of species extinction and survival (2020) Román-Palacios & Wiens, PNAS, https:/doi/10.1073/pnas.1913007117

The Crux

We tend to think of climate change as bad, and despite the fact that some organisms will benefit from it, many others won’t. A big part of why we consider it bad is that species are predicted to be lost at an alarming rate, with some estimates as high as 54% of all organisms going extinct. An issue with these predictions is that they tend to assume that species will track their preferred temperature and precipitation conditions, but this eliminates any ability of organisms to adapt to their new normal over time.

Today’s authors wanted to use data from previous studies to estimate how species adapt (or don’t) to climate change. Although previous work has shown that climate change is detrimental for many species, this study aimed to learn if it was due to changes in the overall temperature, changes in the extremes (i.e. how hot the hottest day is), or was it the sheer speed of change that did organisms in. Read more

It Pays to Break from the Crowd

Image Credit: Pete, CC BY-NC 2.0

Increased reproductive success through parasitoid release at a range margin: Implications for range shifts induced by climate change (2020) MacKay, Gross, & Ryder, Journal of Biogeography, https://doi.org/10.1111/jbi.13795

The Crux

Predicting the response of organisms to climate change is a challenge for ecologists and wildlife managers alike. Fortunately, some responses are common enough that it is still possible to make fairly accurate predictions about them without too much information. One common response is that of the range shift, whereby a population of organisms facing some alteration (eg. climate change) in their current habitat, making it unfavorable, begin to move to another location. This allows them to track favorable environmental conditions and possibly mitigate any negative effects of climate change.

Sounds easy, right? Just pack it all up and move when things get hard? Well, for some organisms it may be that simple (looking at you, birds), but for others (like trees) it is significantly harder to do so. Trees (and other plants) are limited in that they depend on other organisms or things like wind to help disperse their seeds. Making things even more difficult are plant species that depend on specific pollinators, and in order for a successful range shift to happen trees AND their pollinators have to make the move. Today’s authors wanted to study how relationships between trees and their pollinators changed at the leading edge of a range shift, allowing them to understand how and why trees succeed during a range shift.

Read more

« Older Entries