Author Archives: Adam Hasik

Do As I Do

Predators like these Great tits (Parus major) eat a wide variety of insects, but some of those insects are so unpleasant to eat that birds tend to avoid them. How does this trait evolve in prey animals when its maintenance and origin depend on the predators learning by eating them? (Image Credit: Shirley Clarke, CC BY-SA 3.0).

Social information use about novel aposematic prey is not influenced by a predator’s previous experience with toxins (2019) Hämäläinen et al., Functional Ecology,

The Crux

Many animals in nature have evolved a defense strategy known as aposematism, meaning that they display warning colors or patterns that tells predators that they are not worth eating due to their toxicity. Predators can learn to avoid aposematic prey by either sampling different prey animals and learning for themselves, or they can watch other predators eat different prey species and, depending on the reaction of that predator, learn what may or may not be good to eat.

The paradox of the evolution of this aposematic trait is that toxic prey species are not only highly visible and easily noticed by predators, but they must be attacked in order for predators to learn that they shouldn’t eat them, meaning that these prey species may not even survive long enough for them to enjoy the benefits of predator avoidance. The question then becomes are aposematic prey able to persist in nature because predator learn to avoid them? The authors of today’s paper wanted to investigate how predators that have learned to avoid toxic prey will watch and learn from other predators eating new, possibly toxic prey.  Read more

It’s What and Where You Eat

Animals depend on consumable energy to live, and that energy can come from a variety of places. If the energy that animals get from their food varies in quality depending on where the animals get their food, what does this mean for birds like the Eastern Phoebe (Sayornis phoebe) that consumes both terrestrial and aquatic food? (Image Credit: Andrew Cannizzaro, CC BY 2.0).

Aquatic and terrestrial resources are not nutritionally reciprocal for consumers (2019) Twining et al., Functional Ecology,

The Crux

In the natural world, ecological subsidies, or the influx of sustenance from one habitat type to another, connect a variety of environments. While research has been conducted on this topic in the past, most of it has dealt with the quantity of energy moving between habitats, but not the quality of the resource itself.

When one habitat (such as an aquatic habitat) is rich in a specific resource that is hard to find in other habitats, subsidies of these resources play a unique role by providing animals and plants with food or energy that they could otherwise not get. The authors of today’s paper wanted to investigate if subsidies from aquatic habitats and terrestrial habitats contain the same amount of that hard to find, valuable resource: highly unsaturated omega-3 fatty acids (HUFAs). Read more


We’ve all seen them, either on Instagram or out on the hiking trails and in creek beds. Sure, it may look cool in your time lapse video, but did you know that every single one of these is causing damage to the environment? (Image credit: Craig Stanfill CC BY-SA 2.0).

Yes, cairns are bad. Yes, they look cool, and yes, you get lots of likes for them, but they are bad for the environment and YOU SHOULD STOP BUILDING THEM! There, now that that’s out of the way, let’s have a conversation about cairns and why you should never, EVER, build another one again (and actually take down any that you see).

Read more

Fading Into the Background

Mostly limited to ocean animals, transparency is thought to help escape predators by blending the animal in with its environment, but is this what actually happens? (Image Credit: Wikicommons, CC BY 3.0).

Transparency reduces predator detection in mimetic clearwing butterflies (2019) Arias et al., Functional Ecology,

The Crux

Predators are one of the strongest forces of selection in the natural world, and as a result it can be quite costly to stand out and be more easily noticed. This means that in order to survive, animals must adapt to avoid predators. Besides running away from what is trying to eat you, your best bet is to evolve body coloration that helps you avoid being seen by a predator.

Animals that rely on blending in will match the color or even the texture of their backgrounds, but when prey species live in areas where they cannot easily blend in (like plankton in the water column) they often evolve to be transparent. Unlike their marine counterparts, transparency is normally rare in terrestrial animals. The clearwing butterfly is one notable exception to this rule, and the authors of today’s paper wanted to test whether or not these clear wings actually reduce predation.
Read more

To Blend in or Stand Out?

Body coloration of an animal can be useful for not only attracting prey, but also avoiding being eaten. One important question is whether or not this coloration can simultaneously serve both purposes? (Image Credit: Chen-Pan Liao, CC BY-SA 3.0).

Multifunctionality of an arthropod predator’s body coloration (2019) Liao et al., Functional Ecology,

The Crux

One topic that has interested ecologists for decades is that of animal body coloration, and what function that coloration can serve for the animal. Despite this fascination and the work that has been done to study this aspect of animal biology, the actual mechanisms driving the evolution and maintenance of body color are not well understood. Many different aspects of an organism’s life can shape and affect body color, such as avoiding predators, attracting mates, and whatever resources an organism has available to create specific colors. In addition, many of these aspects often compete with one another, such that a color that is good for attracting mates may also make you more easily-spotted by a predator.

Spiders provide an excellent system in which to study the evolutionary significance of body colors, as previous work has shown that body color affects mate attraction, predator avoidance, and prey attraction. The authors of today’s study wanted to know if these complex color patterns could serve more than one function in the spider’s life.
Read more

Shelley Adamo: The State of Support for Mothers in Science

Having kids and maintaining a career in science can be hard. So what are some practical solutions that universities and other research institutes can implement? (Image Credit: Maj. Michael Garcia, DIMOC, Image Cropped)

During her recent visit to the University of Arkansas (you can read our first interview here), I took the time to sit down with Dr. Shelley Adamo and talk about the state of support for women in science with children. Shelley has spoken about this issue before, and you can see notes from her previous talk in the link at the end of the article.

In this interview, we discuss practical solutions to the family/career conundrum in science, how to trigger prompt action, and whether it’s possible to have a family and be a highly successful scientist.

Read more

When the Growing Gets Hot

Growth is a critical aspect of life for all organisms, and understanding what can and cannot affect it allows us to predict what effect climate change may have on organisms like these zebrafish (Image Credit: Lynn Ketchum, CC BY-SA 2.0).

Warming increases the cost of growth in a model vertebrate (2019) Barneche et al., Functional Ecology,

The Crux

In ecology, how organisms grow is relevant across all levels of life. Growing faster than others can be selected for as an evolutionary advantage, if being bigger earlier means that you have a competitive advantage over other members of your species.

Because growth is so critical to life, it is important to understand what may affect the ability of an organism to grow. The only way an organism can grow is by converting energy it acquires from food to its own body mass, but outside influences, like temperature, can affect how efficient an organism is at this energy conversion. The authors of today’s paper wanted to investigate if this efficiency and the cost of growth itself changed across a range of projected temperatures.
Read more

« Older Entries