Author Archives: Adam Hasik

Shelley Adamo: Consider the Invertebrate

Shelley Adamo was recently asked to testify before the Canadian senate as to whether or not lobsters felt pain (Image Credit: Marco Verch, CC BY 2.0)

Dr. Shelley Adamo is a full professor at Dalhousie University in Halifax, Nova Scotia, Canada. An internationally recognized expert in the field of ecoimmunology and comparative psychoneuroimmunology, Dr. Adamo has an enormous amount of scientific experience in both the lab and field. In addition to her stellar career in academia, she has also brought her expertise and knowledge to the public, as she was recently asked to testify before a Canadian senate committee to discuss whether or not insects feel pain.

During Shelley’s recent visit to my university, I took the opportunity to sit down and talk to her about appearing before the senate, the concept of pain in invertebrates, and the plight of the insect world in general.

Read more

How Different is Too Different?

This Peruvian warbling-antbird must walk a fine line between being different enough from its competitors to reproduce successfully, while staying similar enough to be able to recognize and outcompete the same competitors (Image Credit: Hector Bottai, Image Cropped, CC BY-SA 4.0).

Range-wide spatial mapping reveals convergent character displacement
of bird song (2019)
Kirschel et al., Proc B, https://dx.doi.org/10.1098/rspb.2019.0443

The Crux

In nature, many different organisms can be found in a single location, and sometimes those organisms are closely related to one another. When this happens, classical evolutionary theory predicts that these closely related species should differ in some ways, so as to differentiate members of their own species from others and avoid the costs associated with breeding with a mate that will not produce any viable offspring. This is called character displacement, and there are many examples of this in nature where two different species may be very similar when they live in different places (allopatry), but when they live in the same place (sympatry) they will differ in appearance, behavior, or the exact part of the local habitat that they live in (see Niche Partioning below).

A specific form of character displacement, called agonistic character displacement, occurs when traits or behaviors associated with competition differ between closely related species living in the same area. This is thought to reduce the costs of wasting energy on competing with an organism that you don’t really “compete” with. Agonistic character displacement can, however, result in greater similarity of traits when similar species live together, but previous studies in this area have not accounted for other causes of this similarity. Today’s authors wanted to do just that. Read more

Does Invading Change You?

The red lionfish, an aggressive, fecund, and competitive species invasive to the Atlantic Ocean (Image Credit: Alexander Vasenin, CC BY-SA 3.0).

The genomics of invasion: characterization of red lionfish (Pterois volitans) populations from the native and introduced ranges (2019) Burford Reiskind et al., Biological Invasions, https://doi.org/10.1007/s10530-019-01992-0(0123456789

The Crux

Invasive species are one of the most destructive forces and largest threats to native ecosystems, second only to habitat loss. The “how” and “when” of a species invading new habitats is obviously important, and as such many studies focus on if invasive species are present and if they are spreading. Yet these studies often disregard the mechanisms behind why a species is spreading or succeeding in these new environments. The mechanisms are important here, because by and large most invasive organisms will have very small populations sizes, leaving them vulnerable to stochastic events like environmental flux, disease, and inbreeding depression.

Two key paradoxes of invasive species are that these small groups of invasive organisms tend to not only have more genetic diversity than the native species (making them more adaptable to environmental change), but they are also able to outcompete the native organisms, despite having evolved in and adapted to what may be a completely different environment. The authors of this study used genomic approaches to address and try to understand these paradoxes.  Read more

Can Scavengers Actually Reduce Disease Transmission?

Many organisms are vulnerable to a wide array of diseases and parasites throughout the course of their lives, but could scavengers help reduce that vulnerability? (Image Credit: The High Fin Sperm Whale, CC BY-SA 4.0)

Do scavengers prevent or promote disease transmission? The
effect of invertebrate scavenging on Ranavirus transmission (2019) Le Sage et al., Functional Ecology, https://doi.org/10.1111/1365-2435.13335

The Crux

As intimate as the host-parasite relationship is, it is important to keep in mind that it is embedded within a complex web of other interactions within the local ecological community. To add to this complexity, all of these interactions can feed back on and effect the host-parasite relationship. One ubiquitous part of all communities is the scavenger, an organism that feeds on dead and decomposing organisms. The authors of this paper wanted to investigate how scavengers affect disease transmission in local communities.

This question in interesting because it can easily go either way, depending on the community in question. Scavengers could lower disease transmission by eating infected organisms, thus removing contagious elements from the environment. However, scavengers could also increase transmission by promoting the spread of contagious elements in the community via their own waste after they consume infected tissues.

Read more

Finished Before You Even Started

Predators are known to affect prey while they are adults and juveniles, but what about when they haven’t even hatched yet?  (Image Credit: Bernt Rostad, CC BY 2.0)

Predation risk affects egg mortality and carry over effects in the larval stages in damselflies (2018) Sniegula et al., Freshwater Biology, p. 1-9

The Crux

In the natural world, one of the most dangerous things that a prey animal has to worry about is a predator. These organisms depend on the prey for their sustenance, and as such have become very good at finding ways to eat them. These are known as direct effects, as a predator eating prey is a direct interaction.

Another aspect of the predator-prey relationship is that of indirect effects, or effects that a predator has on prey that don’t involve it eating the prey animal. These can include predator-induced changes in the prey’s behavior, immune function, or even survival. These indirect effects are usually studied in prey species that are adults or juveniles, but the authors of today’s paper were interested in what indirect effects predators had on the eggs of prey species.

Read more

Blending In

In nature, it often pays to blend in to your background, especially if you’re a prey species like the deer mice used in this study. (Image Credit: David Cappaert, CC BY 2.0)

Linking a mutation to survival in wild mice (2018) Barret et al. Science, 363, p. 499-504.

The Crux

A big part of ecological studies involves investigating how certain traits or behaviors work (adapted) or don’t work (maladapted) in a specific environment, while scientists who study genetics may investigate specific parts of the DNA that are under selection for specific values of a given trait. Surprisingly, not many studies investigate these two aspects of natural selection simultaneously, instead they will attribute selection to a specific trait value without knowing the genetic mechanisms behind it.

The authors of this study used a well-studied model system of deer mice (Peromyscus maniculatus) to link these two aspects of ecology together, tying a mutation in a gene that codes for coat color into selection in the wild. The study took place in the Sand Hills of Nebraska, a relatively young region (in geological terms) where these mice are expected to have recently adapted to the environment due to strong selection for traits that promote their survival.

Read more

The Root of Disease

Fields full of herbaceous plants such as these can be incredibly diverse and complicated ecosystems, and the multitudes of species that inhabit them can influence the magnitude of disease that the organisms that inhabit it may encounter (Image Credit: LudwigSebastianMicheler , CC BY-SA 4.0)

Past is prologue: host community assembly and the risk of infectious disease over time (2018) Halliday, F.W. et al., Ecology Letters, 22, https://dx.doi/10.1111/ele.13176

The Crux

Everything in ecology is based around the environment that a focal organism inhabits, including the interactions it has with other organisms and the non-living aspects of the habitat itself (temperature, water pH, etc.). That being said, it’s no surprise that disease dynamics are likely to depend on the environment that a host inhabits, and that the environment itself is a product of what came before. That is to say, the group of organisms that originally populate a given ecosystem can have an effect on how that ecosystem will look in the future (lakes with freshwater mussels will have clearer water than those without).

The scientific literature is full of experiments, observations, and hypotheses about which environmental conditions lead to fluctuations in disease dynamics. As such, it is difficult to come to a consensus with a “one-size-fits-all” rule for disease dynamics and community structure. The authors of today’s study used a long-term experiment to determine what exactly moderates disease over time.  Read more

« Older Entries