Category Archives: Paper of the Week

Fighting Climate Change While Maintaining Biodiversity: Can It Be Done?

Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action (2019) Soto-Navarro et al., Philosophical Transactions of the Royal Society B, https://doi.org/10.1098/rstb.2019.0128

The Crux

With the world under so many anthropogenic pressures simultaneously, trying to come up with management solutions for different issues can be a problem. Climate change and biodiversity are a great example. Storing carbon is a great way to reduce the effects of climate change, and increasing the range of forests worldwide is a great way to increase carbon storage. Yet the sort of forests that store carbon most efficiently are often poor at promoting biodiversity. They are largely made up of very similar trees, while forests that include brush, scrubs, and other layers often store less carbon, but house more biodiverse communities.

As such, finding areas that are prime specimens for a) storing carbon and b) biodiversity conservation are incredibly important, so that managers at every level (from park rangers right up to the Intergovernmental Panel on Climate Change) can know where interests overlap, and adjust plans accordingly.

Read more

Evaluating Ecology’s Impact Through the Lens of “Solution Science”

Ecological restoration (pictured here, sand dune restoration conducted by NH Sea Grant in New Hampshire, USA) is a form of solution science. (Image Credit: Caitlin Mandeville., CC BY 2.0, Image Cropped)

Shining a Brighter Light on Solution Science in Ecology (2020) Doubleday & Connell, One Earth, https://doi.org/10.1016/j.oneear.2019.12.009

The Crux

These days, it can feel hard to go even a day without thinking about the many environmental challenges facing the world. Climate change, habitat degradation, species extinctions… it can all feel a bit overwhelming sometimes. In fact, many of us ecologists chose careers in this field because we hope to contribute to solving these problems. There is no doubt that many of the questions investigated by ecologists have direct relevance to our ability to live more sustainably on earth. But how often do ecologists make the leap from basic ecological knowledge to the ways that this knowledge can be used to make a positive difference in the world?

In a January 2020 publication, authors Doubleday and Connell calculated the percentage of articles published in top ecology journals that have a clear focus on solving environmental problems and found that only 14% of top ecology articles focus on what they call “solution science”.

Read more

Biotic Interactions: Not All They’re Cracked Up to Be?

Image Credit: Danyell Odhiambo/ICRAF, CC BY-NC-SA 2.0

Local Adaptation to Biotic Interactions: A Meta-analysis across Latitudes (2020) Hargreaves et al., The American Naturalist, https://doi.org/10.1086/707323

The Crux

Local adaptation is a process whereby individuals native to a given area are better-suited to live in that environment than foreign individuals, and those local individuals will out-compete foreign individuals. This adaptation to local conditions can range from a predator that is better at finding and catching prey, to a plant that is more efficient than another at taking nutrients from the soil, or to a host that has evolved defenses against a local parasite. Despite a wealth of literature and science that has been dedicated to the study of local adaptation, it is not clear what it is about the environment that commonly drives it.

Early studies of local adaptation measured abiotic (non-living) factors like temperature and the amount of light, but this ignores the fact that all environments include biotic factors like other species and any interactions with them. A small amount of studies have shown that biotic interactions (i.e. interactions with other species) can drive local adaptation, but there isn’t a consensus on how common of a pattern that is. Today’s authors used a meta-analysis of previous studies to test how these biotic interactions affect local adaptation. Read more

Investigating the Small Island Effect

Image Credit: Dmitry Teslya, CC BY 2.0, Image Cropped

Species-area relationships on small islands differ among plant growth forms (2020) Schrader et al., Global Ecology and Biogeography, https://doi.org/10.1111/geb.13056

The Crux

We’ve talked a lot about Island Biogeography Theory (IBT) in the last couple of weeks. One of the key tenets, established way back in the 60s, is that as an island’s area decreases, its species richness tends to as well. Yet since IBT was conceptualised, there have been a number of amendments made to it. The Small Island Effect (SIE) is one of them.

SIE essentially means that below a certain threshold (called a ‘breakpoint’), species stop obeying that species richness to area relationship. This week’s researchers wanted to test whether that breakpoint was different between species groups, and whether the species area relationship changed below that breakpoint, or simply disappeared.

Read more

The How and Why of Climate-Mediated Extinction

Image Credit: Dreamy Pixel, CC BY 4.0

Recent responses to climate change reveal the drivers of species extinction and survival (2020) Román-Palacios & Wiens, PNAS, https:/doi/10.1073/pnas.1913007117

The Crux

We tend to think of climate change as bad, and despite the fact that some organisms will benefit from it, many others won’t. A big part of why we consider it bad is that species are predicted to be lost at an alarming rate, with some estimates as high as 54% of all organisms going extinct. An issue with these predictions is that they tend to assume that species will track their preferred temperature and precipitation conditions, but this eliminates any ability of organisms to adapt to their new normal over time.

Today’s authors wanted to use data from previous studies to estimate how species adapt (or don’t) to climate change. Although previous work has shown that climate change is detrimental for many species, this study aimed to learn if it was due to changes in the overall temperature, changes in the extremes (i.e. how hot the hottest day is), or was it the sheer speed of change that did organisms in. Read more

Bigger is Not Always Better in Habitat Conservation

Whilst Island Biogeography Theory originally led many to believe that larger, more connected patches of habitat are more important for species conservation, new research suggests that overlooking smaller patches could be dangerous (Image Credit: LuxTonnerre, CC BY 2.0, Image Cropped)

Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity (2019) Wintle et al., PNAS, https://doi.org/10.1073/pnas.1813051115

The Crux

Human land use over the past millenia has divided species habitats into smaller and smaller patches – a practice which often leaves conservationists with the tough choice of which remaining patches they should focus their efforts on. Traditional practice has seen the prioritisation of large patches that are well connected to other, with this preference often meaning that smaller more isolated patches are neglected, and often cleared.

This week’s paper authors wanted to check whether this was really the best way of doing things, by looking at the relative conservation value of a variety of habitat patches.

Read more

It Pays to Break from the Crowd

Image Credit: Pete, CC BY-NC 2.0

Increased reproductive success through parasitoid release at a range margin: Implications for range shifts induced by climate change (2020) MacKay, Gross, & Ryder, Journal of Biogeography, https://doi.org/10.1111/jbi.13795

The Crux

Predicting the response of organisms to climate change is a challenge for ecologists and wildlife managers alike. Fortunately, some responses are common enough that it is still possible to make fairly accurate predictions about them without too much information. One common response is that of the range shift, whereby a population of organisms facing some alteration (eg. climate change) in their current habitat, making it unfavorable, begin to move to another location. This allows them to track favorable environmental conditions and possibly mitigate any negative effects of climate change.

Sounds easy, right? Just pack it all up and move when things get hard? Well, for some organisms it may be that simple (looking at you, birds), but for others (like trees) it is significantly harder to do so. Trees (and other plants) are limited in that they depend on other organisms or things like wind to help disperse their seeds. Making things even more difficult are plant species that depend on specific pollinators, and in order for a successful range shift to happen trees AND their pollinators have to make the move. Today’s authors wanted to study how relationships between trees and their pollinators changed at the leading edge of a range shift, allowing them to understand how and why trees succeed during a range shift.

Read more

« Older Entries