Tag Archives: amphibian

Divided and Conquered

Image credit: Alex Proimos, CC BY-NC 2.0, Image Cropped

Experimental habitat fragmentation disrupts nematode infections in Australian skinks (2019), Resasco et al., Ecology. https://doi.org/10.1002/ecy.2547

The Crux

Habitat destruction is an all-too-familiar side effect of human development and expansion. But another prevalent issue is habitat fragmentation, whereby habitat isn’t completely destroyed, but instead broken up into fragments and separated by developed areas. While some may think this is good, because there is still habitat available for wildlife to inhabit, the disconnected nature of what is left makes it very difficult for most wildlife to thrive, as they require much more connected landscapes.

Though fragmentation has been well studied in the past, less is known about how it affects parasites. Because they depend on other organisms for their own survival, parasites in particular are at risk of local or even extinction due to the cascading effects of species loss (i.e., coextinction, see Did You Know?). The complex nature of many parasite life cycles, in addition to a scarcity of experimental studies, makes it difficult to predict what effects that fragmentation will have on parasites. Today’s authors used a long-running, large-scale fragmentation experiment (The Wog Wog Habitat Fragmentation Experiment) to determine how fragmentation affects host-parasite interactions.

Read more

Everywhere I’m Local

The cost of travel: how dispersal ability limits local adaptation in host–parasite interactions (2020) Johnson et al., Journal of Evolutionary Biology. https://doi:10.1111/jeb.13754

Image Credit: Francis Eartherington, CC BY-NC 2.0, Image Cropped

The Crux

There are countless parasites in nature, and many of them tend to have relatively short life-cycles. For example, ticks live for about two years, while may of their hosts (us included) live for much longer. Because there is such a disparity in lifespan, parasites are predicted to have a greater evolutionary potential than their hosts. In other words, parasites should evolve faster than their hosts, which theoretically means that parasites should be more fit on local hosts than they would be on non-local hosts, as they would have had more time to adapt (i.e., local adaption, see Did You Know?).

Despite these predictions, the evidence from experimental studies of parasite local adaptation is mixed at best. Some studies show the adaptation to local hosts we’d expect, but some studies don’t. One reason for the lack of consistent evidence is that parasite dispersal between habitats can limit the ability of parasites to adapt. To help explain that I’ll use a comparison to cooking. If you are cooking a dish and you want to make it spicier you add in more spice. But imagine that when you add in that spice, you are also adding a lot of cream. The dish could be spicy, because you are adding spice, but the cream is diluting the spice and masking any potential heat. That is what parasite dispersal does to local adaptation: parasites within a given habitat (the dish) may have the ability to adapt to their hosts (become spicier), but because parasites from other habitats (the cream) are coming into their habitat and diluting those adaptations it masks any overall adaptation to the host (never gets spicy). Today’s authors therefore wanted to test how parasite dispersal affected local adaptation to hosts.

Read more

Can’t Stand the Heat? Get Out of the Host!

Image Credit: Andrew DuBois, CC BY-NC 2.0, Image Cropped

Behavioural fever reduces ranaviral infection in toads (2019) Sauer et al, Functional Ecology, https://doi.org/10.1111/1365-2435.13427

The Crux

Being infected with a pathogen such as a bacteria or virus can be bad for whatever organism is unfortunate enough to suffer the infection, and sometimes it’s bad enough to kill the host. Because of that, there is a strong pressure to engage in behaviors that reduce the chances of becoming infected in the first place. While these behaviors can be inherited and evolve over time, others take place within the lifetime of the infected individual itself, making it a ‘plastic’ response (see the “Did You Know” from our previous breakdown for the difference between plasticity and evolution).

One plastic response is that of a behavioral fever. In organisms that cannot regulate their own body temperature, like reptiles and amphibians, this behavior involves moving from an area with low temperature to one with a higher temperature, ideally limiting the damage that a pathogen can do or even killing it outright. Because this behavioral fever is so dependent on temperature, it is important to know how climate change may impact emerging infectious disease.

Read more

Can Scavengers Actually Reduce Disease Transmission?

Many organisms are vulnerable to a wide array of diseases and parasites throughout the course of their lives, but could scavengers help reduce that vulnerability? (Image Credit: The High Fin Sperm Whale, CC BY-SA 4.0, Image Cropped)

Do scavengers prevent or promote disease transmission? The
effect of invertebrate scavenging on Ranavirus transmission (2019) Le Sage et al., Functional Ecology, https://doi.org/10.1111/1365-2435.13335

The Crux

As intimate as the host-parasite relationship is, it is important to keep in mind that it is embedded within a complex web of other interactions within the local ecological community. To add to this complexity, all of these interactions can feed back on and effect the host-parasite relationship. One ubiquitous part of all communities is the scavenger, an organism that feeds on dead and decomposing organisms. The authors of this paper wanted to investigate how scavengers affect disease transmission in local communities.

This question in interesting because it can easily go either way, depending on the community in question. Scavengers could lower disease transmission by eating infected organisms, thus removing contagious elements from the environment. However, scavengers could also increase transmission by promoting the spread of contagious elements in the community via their own waste after they consume infected tissues.

Read more

Battle of the Sexes

If male and female predators like this newt hunt in different places, they may have different effects on prey communities. (Image Credit: Dave Huth, CC BY 2.0, Image Cropped)
Sexual dimorphism in a top predator (Notophthalmus viridescens) drives aquatic prey community assembly (2018) Start & De Lisle, Proceedings B, doi:10.1098/rspb.2018.1717

The Crux

Ecology is a scientific discipline focused on the interactions between the biotic (living) and abiotic (non-living) parts of the environment, and within ecology the subdiscipline of community ecology focuses on how these biotic and abiotic parts interact to determine what species live where. When researchers investigate these relationships, they tend to only consider differences between species, instead of differences within a single species. This means that we are missing a big part of the picture, as differences within a single species can outnumber those between multiple species.

One of the most common differences within a species are those between males and females. Depending on the species in question, one sex can be bigger, eat more, live longer, or eat different things, and this can have an effect on the community that the species in question lives in. Despite these many differences between the sexes, there weren’t any direct empirical examples in the scientific literature of these differences affecting community dynamics. The authors of this paper were the first to use an experiment to investigate this phenomenon, using the red-spotted newt (Notophthalmus viridescens), which is an important predator in aquatic communities.

Read more