Tag Archives: biotic

A role for biotic interactions in limiting species’ range limits

Biotic interactions are more often important at species’ warm versus cool range edges (2021) Paquette & Hargreaves, Ecology Letters, https://doi.org/10.1111/ele.13864

Image credit: Malonecr7, CC BY-SA 3.0, via Wikimedia Commons, image cropped

The Crux

In the natural world, most organisms are limited by the environment as to where they can live. While this can be as drastic as a whale being limited to the ocean and humans being limited to the land, there are also more subtle limitations. That is, black and grizzly bears live in temperate environments, but polar bears are inhabit the arctic where it is MUCH colder. Due to the limitations imposed by the environment, black and grizzly bears cannot live further north.

Historically, most studies have focused on abiotic variables (i.e., non-living), like temperature and precipitation, as there is a clear role for the climate in determining where and when a species can live. However, biotic variables (i.e., living) like predation or competition can also play a role in defining the limits of a species range, though this has proven more difficult to test than abiotic factors, as many tests of biotic variables produce species-specific results. Charles Darwin proposed a framework in 1859 that the importance of biotic interactions would vary predictably with latitude and elevation. That is, at cooler, high-altitude locations abiotic interactions would be more important, while biotic interactions would be more important at warmer, low-altitude locations. Although a number of studies have attempted to test the three predictions (see Did You Know? ) derived from this framework, the results are contradictory and come from data testing different predictions using different data. Today’s authors sought to test all three predictions at once in order to resolve these contradictory results.

Read more

It’s Who and Where You Are

A role for the local environment in driving species-specific parasitism in a multi-host parasite system (2022) Hasik & Siepielski, Freshwater Biology, https://doi.org/10.1111/fwb.13961

Image credit: Adam Hasik, image cropped

The Crux

Parasites are an ever-present part of every ecological community on Earth, yet there are some species that harbor more parasites than others. In systems where parasitism is density-dependent, meaning parasitism increases with host density, the most common/numerous species will harbor the greatest amount of parasites. Yet there are also cases of species-specificity, whereby parasites specifically target a single host species. In other host-parasite systems, local-adaption plays a role in parasitism dynamics, whereby parasites are better at attacking their local hosts than they are attacking foreign hosts and/or hosts are better at defending themselves from local parasites than foreign parasites.

With all of these different factors affecting how host-parasite systems operate, it is important to identify when and if each one is operating within specific ecological communities. This is especially necessary when ecological communities are comprised of multiple host species and multiple parasite species, all of which can/do interact with one another.

To investigate the above factors, we first conducted a survey of parasitism in damselflies (Enallagma spp.) and their water mite parasites (Arrenurus spp.). From there, we then carried out to field experiments to understand why parasitism operates the way it does within this system.

Read more