Tag Archives: bird

10 Great SciComm Twitter Games To Brighten Your Quarantine

This month, in line with Global Citizen Science Month, we’ll have a special focus on all things citizen science. For those of you who are unaware of the concept, it’s an initiative by SciStarter and the School for the Future of Innovation in Society at Arizona State University, with support from the Citizen Science Association and National Geographic.

For those who haven’t heard the term before, citizen (or community) science is essentially an all-encompassing term for scientific research and learning that is conducted outside of traditional spheres. It can encompass anything, from your kid collecting bugs in traps in the backyard, to global apps like iNaturalist. While Caitlin will have an in-depth overview of exactly what citizen science entails next Monday, we’ll kick the month off by looking at revolutionary technology that has allowed non-scientists to participate in scientific research worldwide – social media.

Specifically Twitter. One of the most enjoyable things about Twitter’s scientific community has been the advent of SciComm games. These are (often weekly) posts by scientists from different fields, which ask fellow Twittererers to identify, find or pick apart different aspects of an ecosystem. They’re a great introduction to taxonomy and field identification, and they’re super-easy to get involved in.

So below I’ve listed (with the help of Twitter) 10 of the most fun Twitter games out there.

Read more

Mermaid Sex, Evil Spirit Birds and More Weird Ecology Search Terms

Image Credit: Ray Bilcliff, Pexels licence, Image Cropped

We get a lot of fun and strange search terms which lead people to Ecology for the Masses. So inspired by Captain Awkward’s segment ‘It Came From the Search Terms‘, let’s have a look at some of the weirder questions that led people to this site and see if we can provide some answers. Spelling mistakes have been corrected.

Read more

What’s the Deal with P-Values and Their Friend the Confidence Interval?

After the first edition of Ecology for the Masses’ new Stats Corner, many people requested a discussion of p-values. Ask and you shall receive! And as an added bonus, we’ll also talk about confidence intervals. (Image Credit: Patrick Kavanagh, CC BY 2.0, Image Cropped)

Much of ecological research involves making a decision. Does implementing a particular management strategy significantly increase the species diversity of a region? Is the amount of tree cover significantly associated with the number of deer? Do bigger individuals of a species tend to have longer life expectancies?

Read more

Worrying Trends in North America’s Bird Populations

Birds like this American tree sparrow are declining rapidly, shows a study which looks at huge declines in North American bird populations

Birds like this American tree sparrow are declining rapidly, shows a study which looks at huge declines in North American bird populations (Image Credit: Ryan Hodnett, CC BY-SA 4.0, Image Cropped)

Decline of the North American avifauna (2019) Rosenberg et al., Science, DOI: 10.1126/science.aaw1313

The Crux

When we talk about species loss, we generally focus on extinctions. Too often, when we start to rally around a species, it’s because there are a particularly low number of that species left. In many cases, they’ve often crossed a threshold, from which it’s impossible to pull them back from the brink of extinction.

Often this draws attention away from non-threatened species. Often that’s fine – they’re non-threatened right? But downward population trajectories in these species can still damage ecosystems by lessening the impact of their ecological function, lead to local (if not total) extinctions, and of course, leading them to eventually be threatened.

This week’s authors wanted to look at bird population declines in America, but from the perspective of total abundance, as opposed to a more species-specific view.

Read more

Water-Based Recreation Can Promote Non-Native Introductions

Image Credit: Manfred Antranias Zimmer, Pixabay licence, Image Cropped

Invasion of freshwater ecosystems is promoted by network connectivity to hotspots of human activity (2019) Chapman et al., Global Ecology and Biogeography, https://doi.org/10.1111/geb.13051

The Crux

The spread of invasive species throughout freshwater ecosystems is a topic we’ve looked at before on Ecology for the Masses. In a previous paper breakdown we talked about how recreational is heavily responsible for the presence of non-native fish at a European scale.

Our paper this week takes a more local approach. Can we predict the presence of non-native birds, invertebrates and fish by looking at the presence of human activity, and where that human activity is present?

Read more

Jane Reid: Playing the Ecological Long Game

The red-billed chough, subject on one of Jane's long term studies of effects of the environmental on the size and structure of populations

The red-billed chough, subject on one of Jane’s long term studies of effects of the environmental on the size and structure of populations (Image Credit: Jean-Jacques Boujot, CC BY-SA 2.0, Image Cropped)

Our world is changing rapidly. Yet our perception of just how much it has changed is often dulled by our inability to compare what we see around us to what was around fifty years ago with enough clarity. This is one of the reasons that long-term scientific studies are so important. They give us a tangible assessment of just how much our world has changed, whether that be in the climate, how species have evolved, our how populations fluctuate.

Jane Reid is the new International Chair Professor at the Department of Biology at the Norwegian University of Science and Technology. Jane has spent years working with several long-term studies, some of them successful, others not so much. Sam Perrin and I spoke to Jane about the importance of long term studies in ecological science.

Read more

It’s Not How You Get There, But When

When migrating, animals like the great white pelican have to walk the fine line between saving time and saving energy. (Image Credit: Ray in ManilaCC BY 2.0, Image Cropped).

Landscape-dependent time versus energy optimisations in pelicans migrating through a large ecological barrier (2019) Efrat et al., Functional Ecology, https://dx.doi.org/10.1111/1365-2435.13426

The Crux

We have all seen the amazing scenes in nature documentaries of the great seasonal migrations undertaken by many different species on this planet. By migrating between two different habitats, migrating animals are thought to maximize both how many resources they have access to, and to minimize their exposure to harsh environmental conditions.

Despite these benefits gained by migrating animals, there are risks associated with these seasonal, long-distance travel events. Migrating animals, like the great white pelican (Pelecanus onocrotalus), have to decide what is better: traveling for a shorter distance or using less energy by taking a less strenuous – but longer – path. Today’s authors tracked the great white pelican during its seasonal migration over the Sahara to study how these birds made decisions about their travel.
Read more

It’s What and Where You Eat

Animals depend on consumable energy to live, and that energy can come from a variety of places. If the energy that animals get from their food varies in quality depending on where the animals get their food, what does this mean for birds like the Eastern Phoebe (Sayornis phoebe) that consumes both terrestrial and aquatic food? (Image Credit: Andrew CannizzaroCC BY 2.0, Image Cropped).

Aquatic and terrestrial resources are not nutritionally reciprocal for consumers (2019) Twining et al., Functional Ecology, https://dx.doi.org/10.1111/1365-2435.13401

The Crux

In the natural world, ecological subsidies, or the influx of sustenance from one habitat type to another, connect a variety of environments. While research has been conducted on this topic in the past, most of it has dealt with the quantity of energy moving between habitats, but not the quality of the resource itself.

When one habitat (such as an aquatic habitat) is rich in a specific resource that is hard to find in other habitats, subsidies of these resources play a unique role by providing animals and plants with food or energy that they could otherwise not get. The authors of today’s paper wanted to investigate if subsidies from aquatic habitats and terrestrial habitats contain the same amount of that hard to find, valuable resource: highly unsaturated omega-3 fatty acids (HUFAs). Read more

Parrots in Norway

Image Credit: Sandeeep Handa, Pixabay licence, Image Cropped

The Norwegian landscape is a beautiful thing. Spruce and pine groves piled on the side of mountains and fjords, moose and deer popping up in backyards, woodbirds flitting about on pristine hiking trails. Parrots screeching bloody murder into your ears as you re-enter the city.

No you did not read that wrong. It’s not happening yet, it in a couple of decades parrots, a type of bird not really associated with the sub-Arctic, could be a regular presence around Norwegian cities. So how could this happen, and why is it really quite concerning?

Read more

How Different is Too Different?

This Peruvian warbling-antbird must walk a fine line between being different enough from its competitors to reproduce successfully, while staying similar enough to be able to recognize and outcompete the same competitors (Image Credit: Hector Bottai, Image Cropped, CC BY-SA 4.0).

Range-wide spatial mapping reveals convergent character displacement
of bird song (2019)
Kirschel et al., Proc B, https://dx.doi.org/10.1098/rspb.2019.0443

The Crux

In nature, many different organisms can be found in a single location, and sometimes those organisms are closely related to one another. When this happens, classical evolutionary theory predicts that these closely related species should differ in some ways, so as to differentiate members of their own species from others and avoid the costs associated with breeding with a mate that will not produce any viable offspring. This is called character displacement, and there are many examples of this in nature where two different species may be very similar when they live in different places (allopatry), but when they live in the same place (sympatry) they will differ in appearance, behavior, or the exact part of the local habitat that they live in (see Niche Partioning below).

A specific form of character displacement, called agonistic character displacement, occurs when traits or behaviors associated with competition differ between closely related species living in the same area. This is thought to reduce the costs of wasting energy on competing with an organism that you don’t really “compete” with. Agonistic character displacement can, however, result in greater similarity of traits when similar species live together, but previous studies in this area have not accounted for other causes of this similarity. Today’s authors wanted to do just that. Read more

« Older Entries