Tag Archives: change


Polar bears are the poster child of the Arctic, and under serious threat thanks climate change and the reduction of the polar ice caps. But one person’s loss is another one’s gain, and due to warming temperatures case grizzly bears are able to move further north as the icy conditions (and soft, blubbery seals – the preferred food source for polar bears) recede. This means that grizzlies and polar bears are more likely to come into contact with each other and (interestingly) are able to hybridise and produce a pizzly (or grolar) bear.

Interestingly, and unlike most hybrids, pizzly bears are quite robust (having traits of both parents mean they are likely able to exploit the habitats and food sources of both species) and able to produce viable offspring as shown in a study from 2017 that used genetic analysis to determine ancestry. They found some polar-grizzly hybrids to be 75:25 grizzly:polar bear, which means that one parent (in this case the mother) was a polar-grizzly hybrid to begin with.

As the likelihood of grizzlies and polars coming into contact with each other increases, we expect the number of hybrids in the population to increase as well. This won’t be the first time that these two species interbreed but it does still pose an interesting question of how we view ‘species’, as well as how we would approach hybrids in terms of conservation. Are we okay with polar-grizzly hybrids? Do we see them as a new species or simply an unwanted side effect of species range shifts? Do we view the northward-moving grizzlies as invasive?

Read more: Recent Hybridization between a Polar Bear and Grizzly Bears in the Canadian Arctic

Tanya Strydom is a PhD candidate at the Université de Montréal, mostly focusing on how we can use machine learning and artificial intelligence in ecology. Current research interests include (but are not limited to) predicting ecological networks, the role species traits and scale in ecological networks, general computer (and maths) geekiness, and a (seemingly) ever growing list of side projects. Tweets (sometimes related to actual science) can be found @TanyaS_08.

Mussel Mass

Facilitation alters climate change risk on rocky shores (2022) Jurgens et al. 2022, Ecology, https://doi.org/10.1002/ecy.3596

Image credit: Paul Asman and Jill Lenoble, CC BY 2.0, Image Cropped

The Crux

Climate change has a marked effect on the environment, and in most cases will be (and already is) devastating to natural systems. However, some areas (and the organisms within them) are less vulnerable to harm than others. Biogenic habitats, or habitats created by a given species which reduce physical stress for other species that live in them (more in Did You Know?), are predicted to reduce the harmful effects of climate change. In particular, they can reduce heat and desiccation.

There have been an abundance of studies on the positive effects of biogenic habitats, but little has been done to explore if these habitats can provide protection against climate change. Today’s authors utilized a marine system to understand how biogenic habitats respond to climate change, allowing for predictions of what will happen to these systems.

Read more


Zoochory (the dispersal of seeds by animals) is pretty important for a lot of plant species. Many plants have evolved to depend on it, and it allows them to get their seeds from A to B, especially over long distances. When plants no longer have their animal buddies to move their seeds around, they aren’t going to be going anywhere fast.

With an uptick in human induced extinctions and the general movement of animals in response to climate change (who at least have the option to pack up their things and move to where the grass is greener), a lot of plants could end up getting left behind. This means that not only are they losing out on the normal dispersal processes but they’re also missing out on a potential ride to more suitable areas as their habitat conditions begin to decline – a bit of a double whammy really.

Read More: The effects of defaunation on plants’ capacity to track climate change

Tanya Strydom is a PhD student at the Université de Montréal, mostly focusing on how we can use machine learning and artificial intelligence in ecology. Current research interests include (but are not limited to) predicting ecological networks, the role species traits and scale in ecological networks, general computer (and maths) geekiness, and a (seemingly) ever growing list of side projects. Tweets (sometimes related to actual science) can be found @TanyaS_08.

Good News In Case Watching the Ocean Burn Got You Depressed

Image Credit: U.S. Fish and Wildlife Service Headquarters, CC BY 2.0, Image Cropped

It’s been an awful week for the environment. If you’ve missed some of the news from the past four or five days, congratulations. But since climate-related depression is a very real thing, and there ARE always some success stories out there regarding the climate and our planet’s biodiversity, I thought I’d take this chance to share some positive stories from around the world.

Read more

Crossing the River Between Fishers and Fish Science

"We need the next generation of scientists to be at the coalface, communicating good scientific information."

This article was first published in late 2018 (Image Credit: Mallee Catchment Management Authority, CC BY-SA 4.0, Image Cropped)

When a food source provides almost half a planet with protein, you can expect the people who deliver that food source to play an important role in society. Fishing is no exception. Any country that has a marine or freshwater ecosystem in close proximity will have a fishing community, and that community can play a variety of roles, from something as simple as putting food on people’s tables to campaigning heavily to keep your country from joining the EU.

So it makes sense that fishers should have access to good fish science, at every level. If you’re a multi-million-dollar corporation, you need to know how fish stocks will respond to certain catch levels over a sustained period. If you’re a local or specialised fishing community, you need to know how available your catch will be in five years given temperature increases. And if you’re one person on a boat in a river, you might want to know how best to treat an over- or under-sized fish to ensure it survives being released.

It follows, then, that there should be open communication between fish scientists and fishers. At this year’s Australian Society of Fish Biology conference, I asked a variety of delegates a simple question: Is there open communication?

Read more

Adaptation of Forests to Climate Change: Is It Possible?

Urbión Model Forest in Castilla y León, Spain (Image Credit: Julia Ramsauer)

In a world in which it’s still tough to convince many people that climate change is a very real phenomena, figuring out ways to tackle climate change is an even more difficult problem to wrap our heads around. In general, there are two strategies we can use: (1) mitigation (reducing the accumulation of greenhouse gases in the atmosphere) and, (2) adaptation (reducing the vulnerability of societies and ecosystems facing the impacts of climate change).

In my last piece (linked here), I wrote about the effects of climate change on forests. But what about the reverse, and their potential to mitigate climate change? Forests are crucial for climate change mitigation – they literally suck carbon out of the atmosphere. At the same time, forest adaptation will be necessary to avoid degradation of forest ecosystems due to a changing climate: an extremely complex task.

Read more

The Impact of Climate Change on European Forests

Province of Lleida, Catalonia, Spain (Image Credit: Julia Ramsauer, CC BY 2.0, Image Cropped)

As carbon emissions rise globally, finding ways to reduce emissions and store carbon are coming to the forefront of modern science. Forests are huge carbon stores thanks to the copious amount of photosynthesis they conduct. As climate change increases temperatures, trees become a very important tool in the fight against rising emissions. One study even described forest restoration overwhelmingly more powerful than all other proposed climate change solutions. You might think: “So let’s go and plant trees!” Unfortunately, it’s not so easy.

Read more

Fighting Climate Change While Maintaining Biodiversity: Can It Be Done?

Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action (2019) Soto-Navarro et al., Philosophical Transactions of the Royal Society B, https://doi.org/10.1098/rstb.2019.0128

The Crux

With the world under so many anthropogenic pressures simultaneously, trying to come up with management solutions for different issues can be a problem. Climate change and biodiversity are a great example. Storing carbon is a great way to reduce the effects of climate change, and increasing the range of forests worldwide is a great way to increase carbon storage. Yet the sort of forests that store carbon most efficiently are often poor at promoting biodiversity. They are largely made up of very similar trees, while forests that include brush, scrubs, and other layers often store less carbon, but house more biodiverse communities.

As such, finding areas that are prime specimens for a) storing carbon and b) biodiversity conservation are incredibly important, so that managers at every level (from park rangers right up to the Intergovernmental Panel on Climate Change) can know where interests overlap, and adjust plans accordingly.

Read more

Turning Students Into Scientists with Professor Vigdis Vandvik

Ask any two researchers what separates a student from a scientist and you’ll likely get two completely different answers. Often I hear people writing their PhD thesis being referred to (and even referring to themselves) as scientists-to-be, which is surely ridiculous, considering the amount of time they spend creating data and publishing research (NO I’M NOT BITTER). But even below that level, I know plenty of Master’s students who have put together singularly impressive datasets or papers that must qualify them for the seemingly subjective title of scientist.

Read more

The 2020 Oikos Write-Up: Ecology in the Anthropocene

My lord Iceland is gorgeous. There could not have been a better setting for the 2020 Nordic Oikos Society’s Annual Meeting. Driving through deserts of snow that ring of the kind of quiet isolation you’d expect from a town in a depressing British murder mystery was a wonderful experience.

As was the conference itself, of course. So let’s recap some of my highlights from this year’s meeting, titled ‘Ecology in the Anthropocene’.

Read more

« Older Entries