Tag Archives: ecology

Policy for the Masses: Thoughts from a Day with IPBES

Bill Sutherland was one of two keynote speakers in last week’s seminar on biodiversity and ecosystem services (Image Credit: Øystein Kielland, CC BY 2.0)

I’ve been on a bit of a policy trip lately. The latest Norwegian Ecological Society conference was heavily policy based, so much so that it inspired me to get in touch and set up a meeting with local freshwater managers in a country in which I do not speak the local language. So when the CBD hosted a one-day seminar on the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (mercifully usually referred to only as IPBES) rolled into town, I was right on board.

Read more

Blending In

In nature, it often pays to blend in to your background, especially if you’re a prey species like the deer mice used in this study. (Image Credit: David Cappaert, CC BY 2.0)

Linking a mutation to survival in wild mice (2018) Barret et al. Science, 363, p. 499-504.

The Crux

A big part of ecological studies involves investigating how certain traits or behaviors work (adapted) or don’t work (maladapted) in a specific environment, while scientists who study genetics may investigate specific parts of the DNA that are under selection for specific values of a given trait. Surprisingly, not many studies investigate these two aspects of natural selection simultaneously, instead they will attribute selection to a specific trait value without knowing the genetic mechanisms behind it.

The authors of this study used a well-studied model system of deer mice (Peromyscus maniculatus) to link these two aspects of ecology together, tying a mutation in a gene that codes for coat color into selection in the wild. The study took place in the Sand Hills of Nebraska, a relatively young region (in geological terms) where these mice are expected to have recently adapted to the environment due to strong selection for traits that promote their survival.

Read more

It’s All in Your Mind

Rodents and primates are periodically cited as some of the more intelligent animals on the planet, but it turns out that the large brains that these mammals possess have evolved more than once in their history. (Image Credit: Arjan Haverkamp CC BY-SA 4.0 

Encephalization and longevity evolved in acorrelated fashion in Euarchontoglires but not in other mammals (2018) DeCasien, Alex R., Evolution, DOI: doi:10.1111/evo.13633

The Crux

Some of the most striking footage from documentaries like the recent “Blue Planet II” involve organisms that display remarkable intelligence (the octopus that uses shells to disguise itself and hide from its shark predators was a particular favorite of mine). As humans, we sometimes assume that we have the best brains on the planet and have somewhat of a monopoly on intelligence, so it’s always fascinating and maybe even surprising to see other animals using their own brains to solve problems. In mammals, brains that are larger than expected have evolved more than once, which is somewhat of a surprise given how costly a big brain is. For example, your brain needs 20% of the oxygen that your body uses, so one out of every five breaths is exclusively for your brain.

Larger brains are also correlated with longer lives, relative to the group that the organism in question belongs to. Historically, studies on brain size and longevity have been dominated by primate species, so the concern was that this long life/large brain trend may only be a primate trend, instead of generalizable to all mammals. The authors of this study wanted to analyze this trend across more mammal groups, in addition to studying the relationship between larger brains and longer lives.

Read more

Who Gets the Credit?

Scientific papers nowadays are written more on computers than with ink and paper, but no matter how you write a paper it is important to distinguish who gets credit for what. (Image credit: Petar Milošević, CC BY-SA 4.0)

A huge component of science is the execution of successful experiments and then writing about those experiments. Consequently, a lot of weight is put on who did what, and what kind of credit people deserve for what they do. This can result in some arguments about how much so and so did for the project, and why they deserve authorship credit. In this article, I want to briefly cover some authorship issues and what kind of impact authorship can have on a scientist’s career.

Read more

Bigger is Not Better

Not all GPS coordinate data are created equal, and some of it may actually be meaningless. (Image Credit: Daniel Johansson, CC BY-NC 2.0)

The smartphone fallacy – when spatial data are reported at spatial scales finer than the organisms themselves (2018) Meiri, S., Frontiers of Biogeography, DOI: https://escholarship.org/uc/item/2n3349jg

The Crux

One of the greatest annoyances when using museum specimens, old datasets, or large occurrence databases (such as GBIF) is when the locality of an occurrence is only vaguely described, and the coordinate uncertainty is high; “Norway” or “Indochina” doesn’t really tell you much about where that specific animal or plant was seen. Luckily, the days where such vague descriptions were the best you could get are long gone, as most of us now walk around with a GPS in our pockets, and even community science data can be reported very accurately, and more or less in real-time.

However, we have now encountered the opposite problem: the reported coordinates of organisms are often too precise to be realistic, and in the worst-case scenario, they might be borderline meaningless. The author of this study wanted to highlight how this advance in technology coupled with our eagerness to get more accurate data and results have made us too bold in our positional claims.

Read more

Shannon McCauley: The Rise of Community Ecology

"...there’s been huge growth in what we can do, but I think there’s been some loss in understanding the behavioural base of biology." (Image Credit: Shannon McCauley)

Community ecology is one of the more recent ecological disciplines, and has enjoyed a rise in popularity in the last decade. Yet it’s often been criticised as a little obscure, and has had difficulties integrating with other branches of ecology like evolution and population dynamics.

With this in mind, I sat down with Doctor Shannon McCauley of the University of Toronto during her recent visit to the University of Arkansas. Shannon is a community ecologist at the University of Toronto-Mississauga who uses dragonflies and other aquatic insects to answer questions about dispersal, community connectivity, and the effects of climate change. We attempted to put a little more context behind community ecology, and highlighted its relevance in the coming years.

Read more

« Older Entries