Tag Archives: food web

It’s EVERYWHERE: The true extent of microplastics

Image Credit: Oregon State University, CC BY-SA 2.0

Quantitative analysis of selected plastics in high-commercial-value Australian seafood by pyrolysis gas chromatography mass spectrometry (2020) Ribeiro et al., Environmental Science & Technology, https://doi.org/10.1021/acs.est.0c02337

The Crux

Plastic is one of those things that we hear about all the time these days. More specifically, we hear about how there is an absolute ton of it in the environment thanks to human negligence and the lack of concern that a large amount of people have for where their plastic goes when they are finished with it. Plastic isn’t like paper or metal, it takes a long, LONG time for it to break down. Plastic bags take anywhere from 10-20 years, but the normal time it takes for most plastic waste to decompose is about 1000 years. To put that into perspective, Leif Erikson led an expedition from Greenland to the coast of what is now North America in the year 1002. If his crew had some plastic with them and left it in the places they visited (typical tourists) there’s a good chance that it would STILL be there today.

I hope I’ve convinced you why plastic is bad, but another danger that plastics pose are microplastics, small bits of plastic that have come from a larger piece, all of which are less than 5mm in size. Our environment is full of them, and the ocean in particular has been saturated with microplastics. In 2014 a research expedition sailed from Bermuda to Iceland (a trip of 2500 miles/4023 km) and found microplastics in every single sample they took. And that was just plastic in the environmental samples they took, the real threat to marine life comes from what happens to all of that microplastic.

Read more

How Form Defines Function

Image Credit: Francesco Veronesi, CC BY-SA 2.0, Image Cropped

Macroevolutionary convergence connects morphological form to ecological function in birds (2020) Pigot et al, Nature Ecology & Evolution, https://doi.org/10.1038/s41559-019-1070-4

The Crux

There are an astounding amount of different forms that the animals on our planet take. Likewise, there are a multitude of diverse functions that animals serve in the environment, such as that of a herbivore, a predator, or scavenger. In some cases it’s a clear link between the form of a given animal and its function in the environment, like that of the beak of a hummingbird that allows it to feed on nectar and their role as a pollinator. But whether or not there is a reliable way to predict the function of an animal based off of its form is has been the subject of considerable controversy.

Deciding on how many morphological traits to use to predict ecological function is a difficult prospect. One could argue that it’s impossible to pick a finite number of traits, as there are infinite possible niches that organisms can fill so there’s no way that a set of traits could fill those infinite possible niches. Mapping animal form to function has major implications for quantifying and and conserving biodiversity, and the authors of today’s paper wanted to to determine just how many traits are needed to do that.

Read more