Tag Archives: island

Light At The End Of The Tunnel For The Tasmanian Devil

Image Credit: Mattias Appel, CC BY-ND 2.0

Image Credit: Mattias Appel, CC BY-ND 2.0, Image Cropped

Quantifying 25 years of disease‐caused declines in Tasmanian devil populations: host density drives spatial pathogen spread (2021) Cunningham et al., Ecology Letters, https://doi.org/10.1111/ele.13703

The Crux

While the Tasmanian Tiger has made news this last month for all the wrong reasons, there’s still another famous species of Tasmanian mammal which deserves just as much attention (probably more given that we can still save this one from extinction). The Tasmanian devil has seen its populations declined considerably over the last three decades, largely due to the emergence of a transmissible facial tumour, the devil facial tumour disease (DFTD).

The way the devils interact mean that even at low densities, the disease can still be transmitted through a population. The aggressive nature of Tasmanian devil mating (which occurs even when there are few devils around) is a big transmission vector. This unfortunately means that extinction due to DFTD was recently thought to be a likely endpoint.

Today’s authors wanted to test to how strongly the devil density influenced the spread of DFTD, and whether the drop in population that the disease causes means that we’re likely to see the disease’s effects wear off at some point, and Tasmanian devil populations stabilise.

What They Did

Long-term data is an absolute must for a study like this. Luckily, the Tasmanian government has run ‘spotlight surveys’ along 172 road transects for the last 25 years. These involve driving slowly along a 10 kilometre stretch of road and recording mammal presence using a handheld spotlight. This was combined with further surveys designed to obtain density at smaller scales to come up with a predictive estimate of devil density in Tasmania from 1985 to 2035.

The team also used occurrence data for DFTD to figure out how quickly it initially spread through Tasmania, and modelled the spread into a new region against the density of the devils in that region.

Did You Know: Devil Reintroduction

The Tasmanian devils are an Australian icon, and a lot of money has been put into figuring out how to save their species. Suggestions have been made to reintroduce DFTD-free population back onto mainland Australia, where their presence may even help reduce the effect of cats and foxes. However it is also possible that the introduction of a new predator could instead put added pressure on mainland species already threatened by invasive predators. Studies into this are ongoing, and you can check out more on them at the articles linked below.

Read More: Releasing the Devil

What They Found

Tasmanian devil density may have played a large role in the initial spread of the disease, explaining why it spread so quickly through certain parts of Tasmania. This isn’t hugely surprising, though the precision with which the authors modelled its spread will be absolutely crucial for effective conservation.

What is really interesting is that the Tasmanian devil population back before the disease struck were probably much lower than initially thought. If this sounds depressing, the other big takeaway is that based on the predictions here, the decline in devil numbers should ease off soon, meaning the disease is unlikely to result in the extinction of Tasmania’s most iconic endemic species.

The study predicts that Tasmanian devil extinction is unlikely, but that doesn’t mean we can relax just yet (Image Credit: Mathias AppelCC0 1.0)

Problems

Normally authors will mention interesting future research which could build on the research they’ve carried out. Standard practice. Here, my ‘problem’ is that the authors mention some research so incredibly tantalising I’m angry at them for bringing it up. What will be important in the future is looking at devil genotypes. The genetic makeup of some devils will make them more resistant to the disease, and identifying and moving these individuals to areas where the disease is rampant could help fight DFTD. Having said that, it could also help produce more aggressive strains of the disease. GIVE ME ANSWERS.

So What?

This is a good news story, which often feel quite scant in the world of ecology. But it doesn’t mean the devil is out of the woods yet. Actually the woods themselves are a massive problem, seeing as Australia’s rates of deforestation are among the worst in the world. We need to constantly monitor the population to figure out where local extinctions are likely.

This study is also a fantastic example of how important long-term monitoring is for ecologists. Studies like the one used here are hard to fund (more on that here), but their value to ecologists in allowing us to figure out what drives population fluctuations is enormous.

Sam Perrin is a freshwater ecologist currently completing his PhD at the Norwegian University of Science and Technology who has spent way too much time looking at photos of Tasmanian mammals over the last 2 weeks. You can read more about his research and the rest of the Ecology for the Masses writers here, see more of his work at Ecology for the Masses here, or follow him on Twitter here.

Releasing the Devil

Conservation trade-offs: Island introduction of a threatened predator suppresses invasive mesopredators but eliminates a seabird colony (2020) Scoleri et al., Biological Conservation, https://doi.org/10.1016/j.biocon.2020.108635

The Crux

Invasive species are a nightmare for local wildlife wherever they are, but on islands they’re even worse. Introduced predators can wipe out entire populations of species, as Tibbles the cat and his fellow feral buddies demonstrated in the extreme when they drove the Lyall’s wren extinct. On coastal islands this is a recurring theme. An invasive ‘mesopredator’ – like the American Mink in Europe or the cat in Australia – is introduced and quickly goes to work, often on small mammals, birds, reptiles and amphibians alike.

Sometimes, but not always, introducing a top predator to an area can suppress the activities of the mesopredator. They can outcompete the mesopredator for resources, or begin to prey on them. The problem is, that if that top predator goes after the same food as the mesopredator, the local prey species suffer either way.

Read more

Investigating the Small Island Effect

Image Credit: Dmitry Teslya, CC BY 2.0, Image Cropped

Species-area relationships on small islands differ among plant growth forms (2020) Schrader et al., Global Ecology and Biogeography, https://doi.org/10.1111/geb.13056

The Crux

We’ve talked a lot about Island Biogeography Theory (IBT) in the last couple of weeks. One of the key tenets, established way back in the 60s, is that as an island’s area decreases, its species richness tends to as well. Yet since IBT was conceptualised, there have been a number of amendments made to it. The Small Island Effect (SIE) is one of them.

SIE essentially means that below a certain threshold (called a ‘breakpoint’), species stop obeying that species richness to area relationship. This week’s researchers wanted to test whether that breakpoint was different between species groups, and whether the species area relationship changed below that breakpoint, or simply disappeared.

Read more

Breaking Down the Social Stigma of Invasive Species with Professor Helen Roy

I sat down with leader of the UK Ladybirds Survey Helen Roy to talk about the stigma surrounding invasive species like this Harlequin Ladybird (Image Credit: PJ Taylor, Pixabay Licence, Image Cropped)

I sat down with leader of the UK Ladybirds Survey Helen Roy to talk about the stigma surrounding invasive species like this Harlequin Ladybird (Image Credit: PJ Taylor, Pixabay Licence, Image Cropped)

While climate change and habitat loss seem to keep making all the headlines when it comes to environmental damage, invasive species are still chugging along comfortably as the second biggest threat to our planet’s biodiversity. New cases are popping up all the time, with the Burmese python, Crucian carp and the emerald ash borer beetle recently reaching new levels of notoriety.

Yet the negative impact that many non-native species have on the habitats they move into have often led to stigmatisation of anything new. This can be counter-productive, as the majority of newcomers into an ecosystem won’t have a pronounced negative effect. And whilst it may seem like a smart piece of preventative management to maintain an ecosystem’s status quo by preventing species introductions, it’s often just not feasible.

With this in mind, I sat down at the recent British Ecological Society’s Annual Meeting with Professor Helen Roy of the UK Centre for Ecology and Hydrology. Helen has studied the impacts of non-native species the world over, from the UK to smaller island nations like St. Helena, and has led several projects for the European Commission on non-native species. We spoke about the importance of distinguishing between invasives and non-natives, the impact of climate change on invasive biology, and the social and cultural significance of both native and non-native species.

Read more

Adapt or Die

Mandt’s Black Guillemont (Image Credit: Óskar Elías Sigurðsson, CC-BY 2.0, Image Cropped)

Phenotypic plasticity or evolutionary change? An examination of the phenological response of an arctic seabird to climate change (2019) Sauve et al., Functional Ecology, https://doi.org/10.1111/1365-2435.13406

The Crux

If you’re here on Ecology for the Masses, then you know that climate change is not only real but is causing all kinds of problems for organisms the world over. One of the things that climate change is doing is altering seasonality, the time of year in which a given season will take place. For example, where I live in the US, it is normally cold at this time of year, but as I write this it is 60F/16C, much warmer than it should be despite it almost being winter. These changes can affect when organisms start their seasonal breeding, but how these breeding events change is not always the same.

Some changes are due to evolution, or the change in a population’s gene frequencies over time. As mutations and selection take place, a given population may have some traits or behaviors selected for over others. Another way that these changes can happen is via plasticity, which is a change induced by the environment, but without changing the gene frequencies (See Did You Know? for more information). The authors of today’s paper wanted to know if the change in breeding dates of a colony of seabirds (Mandt’s black guillemont, Cepphus grylle mandtii) was due to evolution or plasticity.

Read more

The Ecology of a Mermaid

Image Credit: The Little Mermaid, 1989

Adam regales us with one of the weirdest stories I’ve ever heard, and in case you were wondering, yes we do talk about how mermaids have sex. Jesus. Also there’s some cool ecology. Like how did mermaids evolve? Was it from a mutated baby tossed overboard? Probably not.

05:19 – Mermaids in Cinema
16:35 – Ecology of the Mermaids
33:25 – Mermaid Copulation (you were warned)
38:07 – The Mermaids vs. Jaws

You can also find us on iTunes and Google Play.

Whom to Blame – Cats or Rats?

Feral cats are responsible for the decline of many endemic species worldwide. But will removing them boost rat populations, causing more potential harm?

Feral cats are responsible for the decline of many endemic species worldwide. But will removing them boost rat populations, causing more potential harm? (Image Credit: Brisbane City Council, CC BY 2.0, Image Cropped)

Trophic roles of black rats and seabird impacts on tropical islands: Mesopredator release or hyperpredation? (2015) Ringler et al., Biological Conservation, https://doi.org/10.1016/j.biocon.2014.12.014

Guest post by Bart Peeters

The Crux

For centuries, rats have been portrayed as carriers of diseases and death; whereas our feline friends, worshipped by the ancient Egyptians, will definitely make your YouTube video go viral (a quick Google search of “cat video” shows 1 310 000 000 results). Both have been introduced, either accidentally or deliberately, to islands where endemic species have evolved and adapted to an environment without these generalist predators. So how do you know if eradicating one of them will make things better for the native wildlife?

Before taking radical conservation actions, it may be a good idea to understand how feral cats (the apex predator), rats (the mesopredator) and their common prey are affecting each other. Namely, if you kill all the cats, will there be more rats to prey on seabirds? On the other hand, will killing all the rats really reduce the predation by cats on seabirds?

Read more