Tag Archives: nematode

Bigger is Better

Population size impacts host-pathogen coevolution (2021) Papkou et al. 2021, Proc B, https://doi.org/10.1098/rspb.2021.2269

Image credit: Kbradnam, CC BY-SA 2.5, via Wikimedia Commons

The Crux

Host-pathogen interactions are maybe best characterized as a battle – a pathogen (a parasite that causes disease) doing what it can to maximize how much it can get from a given host organism, and a host doing what it can to defend itself from this endless attack. As a result, hosts and pathogens are locked in an endless evolutionary battle, whereby hosts evolve to better defend themselves and pathogens evolve to better attack the host. A key factor in this battle is population size, as this affects the evolutionary potential of a given population of organisms to respond to selection.

The larger a population of hosts, the more novel genetic variants there are, which are simply organisms with different genetic make-ups, which can be the result of mutations popping up or through combinations with other genetic variants within the population. The more variation there is, the more diverse the population is, and the more chance it has of carrying the genes that could help it respond to a new threat, like a pathogen.

This means that a larger host population is more likely to have a genetic variant that is able to defend itself from these pathogens. That variant will then be selected for and the host population will become more resistant to that pathogen over time. While a lot of theory has been dedicated to understanding these coevolutionary battles, actual experimental evidence is lacking. Today’s authors used a model system to conduct evolutionary experiments to test the effect of host population size on host-pathogen coevolution.

Read more

Divided and Conquered

Image credit: Alex Proimos, CC BY-NC 2.0, Image Cropped

Experimental habitat fragmentation disrupts nematode infections in Australian skinks (2019), Resasco et al., Ecology. https://doi.org/10.1002/ecy.2547

The Crux

Habitat destruction is an all-too-familiar side effect of human development and expansion. But another prevalent issue is habitat fragmentation, whereby habitat isn’t completely destroyed, but instead broken up into fragments and separated by developed areas. While some may think this is good, because there is still habitat available for wildlife to inhabit, the disconnected nature of what is left makes it very difficult for most wildlife to thrive, as they require much more connected landscapes.

Though fragmentation has been well studied in the past, less is known about how it affects parasites. Because they depend on other organisms for their own survival, parasites in particular are at risk of local or even extinction due to the cascading effects of species loss (i.e., coextinction, see Did You Know?). The complex nature of many parasite life cycles, in addition to a scarcity of experimental studies, makes it difficult to predict what effects that fragmentation will have on parasites. Today’s authors used a long-running, large-scale fragmentation experiment (The Wog Wog Habitat Fragmentation Experiment) to determine how fragmentation affects host-parasite interactions.

Read more