Tag Archives: reproduction

To Stab, Or Not To Be Stabbed: The Sex Lives of Flatworms

Image Credit: Hectonichus, CC BY-SA 3.0, Image Cropped

Would you rather stab, or be on the receiving end of a stab? This may seem like a confronting question, but it’s the dilemma many flatworms face when a mating opportunity arises. 

Option 1: You are a flatworm and have just been stabbed by a stubby penis. You now have puncture wounds that must heal, after which you must carry fertilized eggs which you need to lay and protect upwards of 24 hours. Oh, the energy demands! 

Option 2: Flatworm victory! You have successfully stabbed your opponent with your stubby penis before they could stab you. Your sperm has now fertilized their eggs. With this win, you move on with life and wait for your next mating “opponent”.

Which option do you choose? If you still can’t choose, it’s a good thing you aren’t a simultaneous-hermaphroditic flatworm. These flatworms have both fully functional male and female reproductive capabilities that can be used interchangeably, unlike other hermaphroditic species who switch back and forth during different phases of life. One might say these individuals have the capability to “choose” what role they want to play, male or female. Although, those forced into the role of reproductive female may disagree…

It is believed that individuals fight to “remain male” (i.e., not be fertilized) because sperm is biologically cheaper to produce than eggs, and males can produce more offspring than females over a lifetime. This type of fight has been thought to be “pure evolutionary selfishness”.

It was only discovered recently, after Dr. Leslie Newman and Dr. Nicholas Michiels spent 20 hours continuously watching pairs of captured flatworms. They observed that when an individual encounters another, both assume a fighting stance, curling their bodies back to display their penises. Next, they began to fight, each attempting to stab the other, which could last from 20 to 60 minutes.

Two Pseudobiceros bedfordi  facing off (Image Credit: Whitfield et al., 2004, Everything You Always Wanted to Know about Sexes, CC BY 2.5)

Different species fight with different strategies. For example, racing-line flatworms (Pseudocerotidae bifurcus) use their penis to repeatedly strike at one another until one succeeds, injecting sperm under the skin of the other. Once the sperm is injected, it moves through the body to find and fertilize the eggs. Persian carpet flatworms (P. bedfordi, pictured above) instead use their penis like a water gun, ejaculating anywhere on their opponent’s body. With a sperm cocktail that dissolves flesh, it burns its way through various tissues until it reaches and fertilizes the eggs. 

Penis fencing is the term scientists use to describe this behavior to “remain male. This mating behavior isn’t seen amongst all flatworm species, only certain species within the family Pseudocerotidae. In the 1990’s there were only two species of flatworm known for this behavior, however as of 2020, the number has grown to 16. 

Evolution of Penis Fencing

Species of flatworms can use sexual reproduction (need both gametes; sperm and egg), asexual reproduction (does not require both gametes, obtain all DNA from parent), or both. Those that use both, do so depending on which strategy is favoured by the environmental conditions. For example, sexual reproduction is favored under harsher, more unpredictable conditions, since genetically variable offspring are often better able to adapt and survive these conditions. Asexual reproduction may be favored when individuals are scarce, however it tends to be avoided as there is on average a 50% loss of genetic diversity per generation, subsequently increasing the probability of inbreeding in future generations. If asexual reproduction does occur, it can occur through budding or transverse fission. Budding occurs when ‘buds’ (i.e., outgrowth) grow out of the flatworm’s body until they are large enough to break off as new individuals. Fission, on the other hand, involves an individual being cut in half, with each half becoming a new individual. 

For more wholesome Ecology comics, check out more of Tanya Strydom’s work on this site!

A species may employ different hermaphroditic strategies of cross-fertilization depending on their ecological niche. These include delivery of sperm to a sperm-receiving organ of the mating partner, or hypodermic insemination of sperm into the cellular tissue by a modified penis that enables individuals to pierce the body wall of their partner. It is believed that the willingness to invest as little resources as possible into their offspring is very strong in hermaphroditic species, leading to these extreme mating behaviors such as penis fencing.  

Yet penis fencing does not always occur when individuals meet. Four possible scenarios have been observed when individuals encountered one another: 

  1. Both partners were receptive to mating and penis fencing was observed, 
  2. Both partners were receptive but no penis fencing was observed, 
  3. Only one partner was receptive and no penis fencing was observed however insemination was successful, and 
  4. Neither were receptive to mating. 

If penis fencing occurs, it typically leads to successful sperm insemination for one or both individuals. Number 3 may be the result of other mating behaviors. For example, mating Starry flatworms (P. stellae) will curl around each other, swimming in circular motions in attempts to inseminate each other. 

Outcomes of Penis Fencing

A more recent study in 2020 found that penis fencing results in three outcomes; 1) both individuals were inseminated, 2) one individual was inseminated, or 3) neither were inseminated. These researchers found penis fencing to be more of a duel or contest mating ritual, rather than an aggressive, violent behavior as was originally thought. This is because they found different scenarios where penis fencing occurred that resulted in neither individual being inseminated, or where no penis fencing occurred resulting in at least one individual being inseminated. Although we may think of penis fencing a little differently now, one thing that will forever remain constant are the words of David Attenborough, “its only solace is knowing it’s young will carry the genes of a master swordsman”.  


Jennifer Merems is a writer and researcher focusing on behavioral and nutritional ecology. She is currently a PhD candidate in the Department of Forest and Wildlife Ecology with the University of Wisconsin-Madison. You can learn more about Jennifer by following her on Twitter at @atyourcervid.

Fishy Families

Image credit: Nick Hobgood, CC BY-SA 3.0, Image Cropped

If you’ve ever seen the movie Finding Nemo, you might’ve also heard the fun tidbit that Nemo’s dad, Marlin, should have become a female when Nemo’s mother Coral died. As strange as it may sound, this is true for many species of fish on earth. Every clownfish community has one female in charge (the only female in the community), and that female only mates with one male, the largest male in the community. The rest of the community is made up of smaller, immature, non-breeding males. When the female dies, the breeding male will become the new female, and the largest of the immature males will take the role of the breeding male. Simple enough, right? 

Read more

Copy-Paste

Introverts unite! Okay so maybe California Condors aren’t out there cloning friends for themselves – but they are able to produce viable offspring from unfertilised eggs and that’s pretty darn close.


The Effects of Reproduction on Coexistence

Image credit: Charles J. Sharp, CC BY-SA 4.0

When ecology fails: how reproductive interactions promote species coexistence (2021), Gómez-Llano et al., Trends in Ecology and Evolution. https://doi.org/10.1016/j.tree.2021.03.003

The Crux

Scientific literature, like many different aspects of society and culture, goes through periods where a given subject/topic is more prominent in the public conscience than others. Lately, the question of coexistence has been at the forefront of the minds of many community ecologists. Coexistence is the state in which two or more species can each maintain a population in the same habitat as each other, provided that the environmental conditions and species interactions that they experience remain stable. Many studies of coexistence have investigated how differences among coexisting species allow them to maintain their coexistence, which makes sense, as it’s hard to coexist with another species if they require the exact same food or habitat as you do.

Yet there are a lot of examples of coexisting species that seem to be almost identical. Some researchers have suggested that these networks of similar species are unstable and should break down over time. But are these groups of species truly doomed? Or are there other processes maintaining this seemingly unlikely coexistence?

Today’s authors suggest that reproductive interactions among species are what may allow such similar species to continue coexisting. While much of the work in this area is theoretical rather than empirical (see Did You Know?), the authors reviewed what empirical evidence they could. Today’s paper is a review (a paper that summarizes lots of previously published papers with the goal of synthesizing knowledge), so I will briefly touch on the main points as put forward by the authors.

Read more

If It Ain’t Broke, Don’t Fix It

Image Credit: Goutham89, CC BY-SA 4.0

The evolution of crocodilian nesting ecology and behavior (2020) Murray et al., Ecology and Evolution, https://doi.org/10.1002/ece3.5859

The Crux

One goal of evolutionary ecology is to understand the links between microevolution and macroevolution, meaning evolution in the short term (multiple generations) and how that scales up to the long term (millions of years). In macroevolution, a group of organisms is thought to be successful if it not only exists for a long period of time, but if it also boasts a large number of species. With those criteria in mind, crocodilians (alligators, crocodiles, gharials, and caimans) are one of the most successful lineages to have ever existed on the planet. Though they may not be the most diverse group of organisms with only 25 species, they have been around for about 100 million years. To put that into perspective, dinosaurs went extinct about 65 million years ago, meaning that the crocodilians not only lived with dinosaurs, but they survived the mass extinction that the dinosaurs didn’t.

This longevity as a lineage raises some questions as to what it is about the crocodilians that made them so successful, when their cousins the dinosaurs died out. An interesting aspect of crocodilians is that there is very little variation among these organisms, as they are all generalist carnivores, live aquatic lives, exhibit mating vocalizations, their sex is determined by the temperature of their eggs (see Did You Know?), and they care for their eggs and young. Despite these similarities, there are some notable differences in the reproductive ecology and behavior of the different species, specifically how they build and care for their nests. Because of these differences, the authors of today’s study asked if variation in how crocodilians reproduce may have been the cause of their success.

Read more

Should We Conserve Hybrids?

Image Credit: Carol M. Highsmith, CC BY 2.0, Image Cropped

The ultimate goal of species conservation is to preserve a species’ existence in the natural world. To effectively do this, we must know the extent of “species” that we want to conserve. That may sound simple, but the concept of hybridisation can blur the lines of where one species begins and another ends beyond recognition.

Read more

Subspecies – Do We Need Them?

Image Credit: billp1969, Pixabay licence, Image Cropped

You might have come across the word “subspecies” when reading about biodiversity, but what does the term actually mean? And do we really need a more precise classification beyond species? There is unfortunately no consensus about this. Ask 5 biologist and you’ll get at least 10 different answers. So let’s have a look at why it’s such a complicated issue.

Read more

Why Warmer Winters Don’t Always Help Geese

Image Credit: MaxPixel, CC0 1.0, Image Cropped

Contrasting consequences of climate change for migratory geese: Predation, density dependence and carryover effects offset benefits of high-arctic warming (2019) Layton-Matthews et al., Global Change BiologyDOI: 10.1111/gcb.14773

The Crux

Most of us know that climate change will bring warmer, shorter winters to most parts of the world. For many species in areas like the Arctic, it would be easy to interpret this as a good thing – plants grow earlier, so animals get more food, right? Naturally it’s never that simple. Many herbivorous species have evolved in sync with climate cycles so that their reproduction peaks when food becomes available. If season start dates change, these species may not be able to change their own cycles in time. Additionally, what happens if populations of their predators suddenly boom?

Today’s authors wanted to know what role a warming climate played in the population fluctuations of migratory barnacle geese (Branta leucopsis).

Read more

How Different is Too Different?

This Peruvian warbling-antbird must walk a fine line between being different enough from its competitors to reproduce successfully, while staying similar enough to be able to recognize and outcompete the same competitors (Image Credit: Hector Bottai, Image Cropped, CC BY-SA 4.0).

Range-wide spatial mapping reveals convergent character displacement
of bird song (2019)
Kirschel et al., Proc B, https://dx.doi.org/10.1098/rspb.2019.0443

The Crux

In nature, many different organisms can be found in a single location, and sometimes those organisms are closely related to one another. When this happens, classical evolutionary theory predicts that these closely related species should differ in some ways, so as to differentiate members of their own species from others and avoid the costs associated with breeding with a mate that will not produce any viable offspring. This is called character displacement, and there are many examples of this in nature where two different species may be very similar when they live in different places (allopatry), but when they live in the same place (sympatry) they will differ in appearance, behavior, or the exact part of the local habitat that they live in (see Niche Partioning below).

A specific form of character displacement, called agonistic character displacement, occurs when traits or behaviors associated with competition differ between closely related species living in the same area. This is thought to reduce the costs of wasting energy on competing with an organism that you don’t really “compete” with. Agonistic character displacement can, however, result in greater similarity of traits when similar species live together, but previous studies in this area have not accounted for other causes of this similarity. Today’s authors wanted to do just that. Read more

Bringing Back the Wolverine

The Swedish government changed tactics at the end of the 20th century, giving incentives to farmers when there were successful wolverine reproductions in their area

The Swedish government changed tactics at the end of the 20th century, giving incentives to farmers when there were successful wolverine reproductions in their area (Image Credit: Vojtěch Zavadil, CC BY-SA 3.0, Image Cropped)

Paying for an Endangered Predator Leads to Population Recovery (2015) Persson et al., Conservation Letters, https://doi.org/10.1111/conl.12171

The Crux

Humans have a long history of driving dangerous predators out of their backyard. Wolves and wolverines have been driven out of different parts of Europe at different points in history at the behest of farmers looking to protect their livelihood, and the Tasmanian Tiger was driven to extinction for the same reason. But with the realisation that these predators bring enormous ecosystem benefits, governments have been searching for ways to bring about co-existence between predators and locals.

This study looks at a scheme introduced by a Swedish government in 1996, where reindeer herders had previously been compensated for any wolverine related losses. The new scheme introduced compensation for successful wolverine reproductions in the area. Persson et al. decided to have a look at how it fared.

Read more