Tag Archives: richness

Fighting Climate Change While Maintaining Biodiversity: Can It Be Done?

Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action (2019) Soto-Navarro et al., Philosophical Transactions of the Royal Society B, https://doi.org/10.1098/rstb.2019.0128

The Crux

With the world under so many anthropogenic pressures simultaneously, trying to come up with management solutions for different issues can be a problem. Climate change and biodiversity are a great example. Storing carbon is a great way to reduce the effects of climate change, and increasing the range of forests worldwide is a great way to increase carbon storage. Yet the sort of forests that store carbon most efficiently are often poor at promoting biodiversity. They are largely made up of very similar trees, while forests that include brush, scrubs, and other layers often store less carbon, but house more biodiverse communities.

As such, finding areas that are prime specimens for a) storing carbon and b) biodiversity conservation are incredibly important, so that managers at every level (from park rangers right up to the Intergovernmental Panel on Climate Change) can know where interests overlap, and adjust plans accordingly.

Read more

Investigating the Small Island Effect

Image Credit: Dmitry Teslya, CC BY 2.0, Image Cropped

Species-area relationships on small islands differ among plant growth forms (2020) Schrader et al., Global Ecology and Biogeography, https://doi.org/10.1111/geb.13056

The Crux

We’ve talked a lot about Island Biogeography Theory (IBT) in the last couple of weeks. One of the key tenets, established way back in the 60s, is that as an island’s area decreases, its species richness tends to as well. Yet since IBT was conceptualised, there have been a number of amendments made to it. The Small Island Effect (SIE) is one of them.

SIE essentially means that below a certain threshold (called a ‘breakpoint’), species stop obeying that species richness to area relationship. This week’s researchers wanted to test whether that breakpoint was different between species groups, and whether the species area relationship changed below that breakpoint, or simply disappeared.

Read more

How Does Our Interpretation Of Urbanisation Affect How Damaging It Is?

Increased urbanisation may have a negative effect on the richness of moth species like this Vine’s Rustic, but it depends on what scale we consider richness (Image Credit: Patrick Clement, CC BY 2.0, Image Cropped)

Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales (2019) Piano et al., Global Change Biology, https://doi.org/10.1111/gcb.14934

The Crux

You would think that the effect of building a whole lot of stuff on something’s habitat would have a negative effect on just about anything. But building a whole lot of human stuff (maybe let’s retain a modicum of science-ness and call it urbanisation) hasn’t always been shown to be necessarily bad for species. There are a lot of studies out there which show that urbanisation is can be a negative for biodiversity (which makes sense, since for starters it generally breaks up habitat patches and introduces a whole lot more pollutants). But there are also studies showing that urbanisation can increase biodiversity.

Read more

Biodiverse Gardens: Where Doing Less is More

Kiftsgate Court Garden: The Wild Garden 1. An example of a “wild garden” in the UK, where the plants have been left to grow (Image Credit: Michael Garlick, CC BY-SA 2.0, Image Cropped)

How do you make your garden more biodiversity-friendly? During my time at the  Futurum exhibition at The Big Challenge Science Festival, I spent a lot of time talking to people who expressed a desire to be manage their gardens for more plants and animals, but were unsure where to start. So I’ve compiled a brief guide on what to do, and it’s your lucky day – it involves not doing anything.

Read more

Re-Analysing Forest Biodiversity

The Gribskov Forest in Denmarkj, where this study took place (Image Credit: Malene Thyssen, CC BY-SA 3.0, Image Cropped)

Biodiversity response to forest structure and management: Comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation (2019) Lelli et al., Forest Ecology and Management, https://doi.org/10.1016/j.foreco.2018.09.057

The Crux

The classification of biodiversity is something that has become more and more relevant as the term ‘biodiversity’ has worked its way into the public’s vernacular. How we measure biodiversity can vastly influence our perception of it, and whilst we’ve previously looked at spatial interpretations of biodiversity on EcoMass, today I’m examining a paper that looks at interpretations of biodiversity by species groups.

Species richness (how many species are present in a given place) is often the go-to measurement for biodiversity. But it doesn’t always help when trying to conserve an ecosystem. For instance, we may wish to focus on certain types of species which are rare, or that preserve certain ecosystem functions. This paper looks at the differences in the effect of management on biodiversity, depending on which approach to biodiversity you take.

Read more

Simulating the Evolution of Life in South America

Image Credit: johnno49, Pixabay licence, Image Cropped

Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves (2018) Rangel et al., Science, 244, DOI: 10.1126/science.aar5452

The Crux

Understanding the processes which drive biodiversity worldwide is never more crucial than now, in a world where biodiversity is shrinking rapidly. Biogeography, the study of species distributions, has come a long way, but there are still a lot of problems that need solving, including improving our understanding of the interactions between factors like climate change, dispersal abilities, fragmentation and species competition, to name a few.

This paper attempted to analyse some of the effects of those factors in concert, by producing a simulation of the evolutionary process in the world’s most biologically diverse continent, South America.

Read more

Biological Annihilation

The sumatran orangutan, one of many species facing extinction in the earth's sixth mass extinction event

The sumatran orangutan, one of many species facing extinction in the earth’s sixth mass extinction event (Image Credit: Mike Pennington, CC BY-SA 2.0)

Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines (2017) Ceballos et al., Proceedings of the National Academy of Sciences of the USA, DOI: https://doi.org/10.1073/pnas.1704949114

Guest Post by Jonatan Marquez

The Crux

The rate at which species and populations have been going extinct in the last couple of centuries has well and truly earned the title of the planet’s sixth mass extinction event. However, most people rarely realize the severity of the situation. Hearing about the loss of two vertebrate species a year or having the last of some far-off species die out doesn’t see to cause much concern in the general public.

A species extinction is always preceded by population declines and extinctions. Perhaps highlighting the state of natural communities at this level might put the severity of the situation in better context. For example, the Living Planet Index (LPI) estimates that between 1970 and 2012, wildlife abundance has decreased by 58%. This paper focuses on the state and trends of populations of vertebrates by analysing i) the proportion undergoing declines or shrinkages, ii) the global distribution of population reduction events and iii) the general scale of population declines among mammal populations.

Read more

The Chilly Cradle of Life

Species richness is much higher in waters near the equator, but do we see that in a phylogenic tree?

Species richness is much higher in waters near the equator, but do we see that in a phylogenetic tree? (Image Credit: Rich Brooks, CC BY 2.0)

An inverse latitudinal gradient in speciation rate for marine fishes (2018) Rabosky et al., Nature  doi:10.1038/s41586-018-0273-1

The Crux

The tropical regions of the Earth are the most species-rich and diverse ecosystems on the planet, with this diversity and species-richness declining as you move further and further from the equator. One hypothesis explaining this is that speciation rates are simply higher in the tropics, meaning that more species are evolving in a given time in the tropics than anywhere else. To test for this, the authors used the largest phylogenetic tree available and analyzed speciation rates (how many new species evolve from older species) per million years.

Read more