Tag Archives: sculpin

Are the Combined Effects of Human Development Worse Than the Sum of Their Parts?

Decreases in river discharge can negatively affect fish like this sucker, but what happens when they’re compounded by local changes in land use? (Image Credit: Hotash, CC BY 2.0, Image Cropped)

Anthropogenic land-use change intensifies the effect of lows flows on stream fishes (2019) Walker, Girard, Alford & Walters, Journal of Applied Ecology, https://doi.org/10.1111/1365-2664.13517

The Crux

Human activity can create a lot of different problems for the world’s ecosystems. These problems can impact an ecosystem simultaneously, often in different ways. For instance, a warming climate might push some species further towards the poles, but human structures like factories or mines might impede their dispersal. It’s relatively easy to study the effect of any one stressor that we place on a species, but looking at the interaction of multiple human-caused stressors is more difficult.

Take freshwater ecosystems. A warming climate means that there’s less snow and more rain in the winter, which reduces the river’s flow (or discharge) in summer. At the same time, nearby human construction can reduce nearby plant life, which in turn increases the amount of sediment washed into a river and lowers water quality. But do the two effects combined simply equal the sum of their parts, or does that combination make the total effect on local species even worse?

Read more

Using eDNA to Monitor Fish Dispersal

Environmental DNA is a hot topic in biomonitoring. But what is it exactly, and how can it be used to monitor the dispersal of a reintroduced fish species? (Image credit: Gunnar Jacobs, CC BY-SA 2.0, Image Cropped).

Guest post by Christopher Hempel

Using environmental DNA to monitor the reintroduction success of the Rhine sculpin (Cottus rhenanus) in a restored stream (2019) Hempel et al., PeerJ, https://peerj.com/preprints/27574/

The Crux

The term “environmental DNA (eDNA)” is currently booming in molecular ecology. But what exactly is this technological marvel? Essentially, eDNA comprises all DNA released by organisms into their environment, and originates from mucus, scales, faeces, epidermal cells, saliva, urine, hair, feathers – basically anything an organism might get rid of during its life. The eDNA can be collected from the environment, extracted, and analyzed to detect species using molecular approaches. As this is a very sensitive and non-invasive approach, it is a very hot topic for biomonitoring.

eDNA can be collected from any animal (in theory), but aquatic organisms in particular have been shown to be good target individuals (as eDNA is easiest to handle in water samples). Consequently, there are many studies using eDNA to monitor the activity of fish, reaching from the presence of invasive species to the effects of aquaculture. Here, we applied eDNA analysis to monitor a reintroduced fish species, the Rhine sculpin. The sculpin’s poor swimming ability make it useful as a bioindicator of the passability of streams and rivers. We wanted to investigate the potential of using eDNA to monitor the dispersal of the species in a remediated stream on a fine spatial and temporal scale.

Read more