Climate change is a fact of life. Every day we uncover more of the negative effects it will have on the various animals, plants, and fungi in the natural world. Species range contractions are one such effect, and they occur when the area that a given species normally occupies shrinks. They are directly linked to a species’ risk of extinction, with this risk growing as a species inability to adapt to new environments grows. Though the theory sounds logical, many of the exact mechanisms behind range contractions are still unknown.
Ectotherms are organisms that depend on the surrounding environment to regulate their own body temperature, making them particularly vulnerable to climate change. Many different biological mechanisms are involved in regulating temperature, but the ability to reflect solar radiation is a key player. Indeed, the ability of organisms to reflect solar radiation (aka energy from sunlight) is part of the thermal melanism hypothesis (see Did You Know?). Melanistic (darker) organisms may be favored under climate change, due to the protection against UV radiation provided by melanin. However, melanistic individuals are more prone to increased heating, which can be bad. Today’s authors sought to understand how climate change would affect melanistic organisms.
We here at Ecology for the Masses recognize the harm of climate change and the danger that it poses to countless species the world over. Part of climate change involves extreme climate events such as floods, droughts, unusual cold spells, or cyclones, all of which can be devastating to natural systems. By and large these events are seen as negative, and rightfully so! But today’s paper offers another perspective on extreme climate events: their potential for driving evolution towards increased resilience.
Now, I’m not saying that these extreme climate events are good. I dislike them just as much as the next person with a shred of concern about the natural world. That being said, the authors raise some interesting points about the evidence that exists for these events being a positive force for evolution and adaptation. As such, I want to touch on a few of those points, address some issues with this ‘silver lining’, and talk about what it means going forward.
What Evidence Exists
Extreme climate events result in massive losses of organic life, local extinctions, and can drive range shifts. This is quite costly from not only an ecological point of view, but also a social and and an economic one. Due to these costs, a significant amount of effort and money has been dedicated to working on issues associated with these events. Interestingly enough, despite the negative connotations and costs associated with extreme climate events, there is emerging empirical evidence for a “benefit” in that they can cause non-random mortality (see Did You Know?), driving rapid evolution and adaptation.
Scientific theory has predicted that when extreme climate events occur in such a way that they select against weak individuals, but aren’t so extreme that “tougher” individuals cannot live, then these more tolerant and stronger individuals can persist in populations/areas undergoing extreme events. If these tougher individuals can pass on their genes, then a population can rapidly adapt to these extreme conditions. For example, a study showed that a severe cold snap selected for cold tolerance in green anoles (Anolis carolinensis), and similar work has shown that heatwaves selected for thermal tolerance in kelp. While plenty of the lizards/kelp didn’t have the proper traits to survive these extreme temperatures, some of them did. And because they passed on those genes to the next generation, the population is better-suited to survive future extreme temperatures.
Did You Know: Non-Random Mortality
Evolution is a fact of life, and the driving force behind the persistence of life on our planet. However, what you may not know is how evolution actually results in changes in a population/species over time. Individual organisms don’t evolve, species do. So how does that work? Well, it all has to do with how often certain individuals pass on their genes. “Survival of the fittest” refers to the biological concept of “fitness”, which is how good a given organism is at passing on its genes. So in order to be the most fit, you have to pass on the most genetic material, relative to other members of the population. This is where non-random mortality comes into play. Non-random mortality means that there is a pattern behind the death rates. Put into other words, the individuals that survived had something that the ones that died did not. This is how evolution works slowly over time, non-random mortality means that individuals with a given trait tend to die less often than those that don’t have that trait, which means that that trait gets passed on more often than others. Eventually, that trait will become the new normal for that population/species, and evolution has occurred.
What This Means
The potential for extreme events to select for resilience and drive rapid adaptation means that groups dedicated to conservation and preservation of species and ecosystems may be able to proactively anticipate future events. The authors highlight the difficulty inherent in studying non-model organisms for traits/genes that may promote persistence to future climate events, as it involves a LOT of background research to understand the mechanisms behind such persistence. However, to use the anoles from earlier as an example, there are better ways. If one was to go to an area that recently suffered a cold snap like those anoles did and collect the survivors, chances are that most of those survivors have the cold-tolerance trait. By selectively breeding/relocating those survivors conservation workers could prevent future die-offs due to cold snaps.
Problems With These Approaches
This all sounds great, right? No issue? Well, not quite. Just because a given trait may promote persistence to one stressor (the environment) does not mean that it promotes persistence to all others (like disease). Another issue with this silver-lining of adaptation and rapid evolution is the bottleneck effect: extreme events cause mass die-offs. Though the survivors may have a trait that allows them to persist in extreme events, the reduced population size of the survivors may result in such a marked decrease in genetic diversity that the population fails eventually anyway due to the issues associated with inbreeding.
The cheetah is an example of an organism that underwent a population bottleneck, and as such now suffers from very low levels of genetic diversity (Image credit: Ken Blum, CC BY-SA3.0)
So What?
Extreme climate events are an unfortunate reality, and they are only predicted to get worse and become more frequent. Today’s paper offers a pleasant silver lining to that very grim reality, as it highlights the potential for these events to drive evolution and selection to extreme conditions. It may not be as good as not having these events in the first place, but the authors bring up an important point by drawing attention to the evidence that exists for populations adapting to these extreme conditions, many of which seem to be driven by human-induced climate change. I’ve recently re-read Michael Crichton’s Jurassic Park, and I can’t help but think of a quote from the character Dr. Ian Malcolm’s as I was reading this paper: “The planet has survived everything, in its time. It will certainly survive us”.
Adam Hasik is an evolutionary ecologist interested in the ecological and evolutionary dynamics of host-parasite interactions. You can read more about his research and his work for Ecology for the Masses here, see his personal website here, or follow him on Twitter here.
Recent responses to climate change reveal the drivers of species extinction and survival(2020) Román-Palacios & Wiens, PNAS, https:/doi/10.1073/pnas.1913007117
The Crux
We tend to think of climate change as bad, and despite the fact that some organisms will benefit from it, many others won’t. A big part of why we consider it bad is that species are predicted to be lost at an alarming rate, with some estimates as high as 54% of all organisms going extinct. An issue with these predictions is that they tend to assume that species will track their preferred temperature and precipitation conditions, but this eliminates any ability of organisms to adapt to their new normal over time.
Today’s authors wanted to use data from previous studies to estimate how species adapt (or don’t) to climate change. Although previous work has shown that climate change is detrimental for many species, this study aimed to learn if it was due to changes in the overall temperature, changes in the extremes (i.e. how hot the hottest day is), or was it the sheer speed of change that did organisms in. Read more
Species like this red-crowned crane perform yearly migrations, but how do they weigh up the costs and benefits? (Image Credit: Alistair Rae, CC BY-SA 2.0, Image Cropped)
Where the wild birds go: explaining the differences in migratory destinations across terrestrial bird species (2018) Somveille, Manica & Rodrigues. Ecography, 42, p. 225-236.
The Crux
Migratory birds make up a huge chunk of the world’s bird life, yet there are still a lot of gaps in our knowledge concerning why they migrate to the areas they do. There’s a variety of potential benefits to migration, from remaining within a comfortable temperature range or a preferred habitat, to gaining access to areas that have a surplus in resources, to escaping competition with resident species. However, migration also results in increased mortality due to the amount of energy it takes. This week’s study tried to analyse the drivers of migration, and what trade-offs were made between migration’s potential benefits and costs.
Dragonflies like this Western Pondhawk female are particularly vulnerable to warming due to climate change. (Image Credit: Eugene Zelenko, CC BY-SA 4.0, Image Cropped)
Simulated climate change increases larval mortality, alters phenology, and affects flight morphology of a dragonfly (2018) McCauley et al., Ecosphere, doi:10.1002/ecs2.2151
The Crux
Climate change is something that we hear about on a daily basis. The dire warnings tend to concern sea levels rising and temperatures varying so much that we have more intense and deadly storms than before, but these are all direct effects of the climate. Another thing that climate change can do is have indirect effects on organisms.
Organisms with complex life cycles spend the juvenile part of their lives in one environment before moving on to the adult stage in another environment. The researchers in this study wanted to know how simulated climate change during the juvenile stage of the organisms lifetime could affect the adult stage.