Category Archives: Invasive Species

The Case of the Cool Invader: How Animals Cope With New Temperatures

This is a guest post by Dr. Monica Mowery.

Title Image Credit: John Tann, CC BY 2.0, image Cropped

Invasive Widow Spiders Perform Differently at Low Temperatures than Conspecifics from the Native Range (2022) Mowery, Anthony, Dorison, Mason & AndradeIntegrative and Comparative Biology. https://doi.org/10.1093/icb/icac073

The Crux

With increasingly clear effects of global climate change, everyone’s thinking about how we will handle extreme temperatures and weather events as they become more common. Less obvious is the fact that the changing climate is also rearranging global food webs, with many species readjusting in the fact of a new range of temperatures. This might not sound fantastic (and let’s face it, it’s not), but this changing climate may be able to teach us something about how species adapt to higher or lower temperatures.

Temperature plays a key role in determining whether an invasive species can take up residence in a new region. We know that low temperatures can be particularly limiting to newly-invasive species, especially insects and spiders. Yet few studies look at how lower temperature in a new environment can affect the survival, development, and behavior of new invaders.

We tested whether invasive widow spiders from a warm climate (Australia) adapted over generations to the lower temperatures of their invaded habitat in Japan. The move to Japan should require adapting to lower temperatures, but it might not, for a few reasons. Spiders from both locations may be equally good at coping with cooler or warmer temperatures, or, since urban areas are typically warmer than natural habitats, organisms that move between urban habitats might avoid facing the low temperature constraints.

Did You Know: Cities as Heat Islands

It’s hot in cities! One reason for this is the urban heat island effect, where urban areas are several degrees hotter than surrounding natural areas because of all of the heat-absorbing surfaces like roads and buildings. More than half of the human population lives in cities, and as they heat up, it is especially important to understand how some species adapt and even do better in urban environments. Urbanization and climate change can also increase the spread of invasive species. For example, some urban-adapted invasive species thrive in urban habitats that would otherwise be too cold for them to survive and reproduce in. Understanding how urbanization, climate change, and invasions interact can help us predict changes in biodiversity and species distributions in the future.

What We Did

The Australian redback spider, Latrodectus hasselti, is an invasive species of widow spider, native to Australia. Redback spiders are well-known in Australia for their bite and neurotoxic venom. Redbacks have been transported (likely accidentally along with used cars or produce) to Japan, New Zealand, the Philippines, Papua New Guinea, and India. We compared traits across native and invasive-habitat temperatures in a native population of spiders. The native spiders were collected from Sydney, Australia and the invasive population from Osaka, Japan, where redbacks became established in 1995.

Adult female Australian redback spider, Latrodectus hasselti (Image Credit: Sean McCann, CC BY 2.0)

We reared the spiders in the lab for three generations. We first checked for population differences in how spiders responded to extreme temperatures, measuring the lowest and highest temperatures at which spiders were able to maintain normal activity.

Next, we investigated how spiders respond to more moderate temperature differences, such as those in autumn, right before overwintering. When female spiders from each population produced egg sacs, we put the egg sacs for two weeks in either Japan-typical (15 degrees Celsius) or Australia-typical (25 degrees) autumn temperatures, then put all egg sacs at 25 degrees until spiderlings emerged. We predicted that the invasive spiders from Japan would be better adapted to low temperatures than the native Australian population, as they’re used to colder temperatures. We also measured hatching success, development time, and body size.

Once the spiderlings were juveniles, we measured behavioural traits that may be important for survival in nature: boldness – how quickly a spider resumed movement after a simulated predator threat (a puff of air), and exploration – building a web in a new environment.

What We Found

At extreme high temperatures, spiders from each population were similarly tolerant, with females able to move at temperatures of up to 55 degrees Celsius! Surprisingly, males from the invasive population from Japan were less tolerant of extreme low temperatures, suggesting that they may not overwinter successfully in colder regions. Egg sacs from the Japanese population hatched equally well at low and high temperatures, but egg sacs from the Australian population failed to hatch more often at low temperatures. Native spiders also took longer to emerge from the egg sacs than invasive spiders at low temperatures, which could expose egg sacs to more predation risk.

The Japanese population was bolder and more exploratory at low temperatures, but less bold and less exploratory at high temperatures, whereas the native population was similarly bold and exploratory at both temperatures.

Problems?

Spiders from Japan, which live in cooler habitats, developed at both low and high temperatures, compared to a native population, which hatched less and developed more slowly when exposed to low temperatures. This study only tested one invasive and one native population, and it would be worthwhile to compare multiple invasive populations from both cooler and warmer habitats, as well as multiple native populations across Australia.

Although the invasive habitat in Japan is more extreme in temperature, spiders also live in more urbanized habitats compared to the native population. Urban habitats are hotter, and we would like to measure what conditions the animals are directly experiencing in the urban and natural habitats, to find out if spiders are able to colonize cooler climates because they thrive in urban heat islands habitats.

So What?

Some organisms may be better equipped to deal with changes we are facing with urbanization, habitat fragmentation, and climate change. In the case of Australian redback spiders, within twenty years, we found that an invasive population changed significantly in traits related to thermal performance, which may give them an advantage as temperatures change worldwide.

Behavioral traits are studied less frequently; finding increased variability in an invasive population may provide a clue to how the species can thrive in different environments. Understanding how organisms can establish and spread in environments different from their native ranges can help us predict which species will survive in our increasingly urbanized, changing world.


Dr. Monica Mowery is a Zuckerman STEM postdoctoral fellow in the labs of Yael Lubin and Michal Segoli at Ben-Gurion University of the Negev. She received a B.S. in biology and community health at Tufts University, working on butterfly visual signals and behaviour in Sara Lewis’ lab. Her PhD was conducted in the labs of Maydianne Andrade and Andrew Mason at the University of Toronto Scarborough, where she studied invasion success in widow spiders. You can read more about Monica’s work at her website.

Dispersal In A Globally-Invasive Widow Spider

This is a guest post by Dr. Monica Mowery.

Title Image Credit: Sean McCann, CC BY 2.0, Image Cropped

Dispersal and life history of brown widow spiders in dated invasive populations on two continents (2022) Mowery et al., Animal Behaviour, https://doi.org/10.1016/j.anbehav.2022.02.006

The Crux

As I write this, I can hear invasive myna birds chirping in the trees outside, and see yellow pollen from the invasive Acacia trees floating through the air. What makes these species able to thrive far away from their native habitat? Despite the knowledge of how harmful invasive species can be, humans continue to transport species to new environments, both intentionally and unintentionally. Yet even with the explosive growth of both invasive species and invasion ecologists, we still don’t know a lot about which traits make the most successful invaders that can thrive and spread to new places.

One way to investigate this is to compare invasive populations that have just arrived at a new place with populations that have been in an area for a long time. To better understand invasive species, we need to figure out how traits shift in invasive populations, as some individuals survive transport, establish, and spread to new habitats, expanding their range. When this happens, traits can change, or shift, as the species adapt to the new environment. Such traits, such as body size, number of offspring, and dispersal ability, may be particularly important during range expansion. This study is an investigation into how traits of invasive spiders shift on a broad geographic scale on two continents.

Read more

When Is A Fish Really Native?

Image Credit: Alexandre Roux, CC BY-NC-SA 2.0, Image Cropped

Image Credit: Alexandre Roux, CC BY-NC-SA 2.0, Image Cropped

In the summer of 2019 I spent a week driving around south-east Norway with my Master’s student Bastian. The plan was to speak to local freshwater managers and get their take on invasive fish species in Norway. I’d never conducted this sort of research before, but I thought I knew what I was in for. Invasive bad, native good, right? More nuanced approaches are for those who are disconnected from the problem, academics like me who could watch from a distance and comment airily.

First interview. What does the term “invasive species” mean to you?

Obviously I expected some combination of “alien to the region”, “brandishes halberds and horned helmets” and “outcompetes the native trout” (trout and its fellow salmonids are really quite popular here). What I got instead (abridged) was a contemplative shrug and a reminder that there are almost no native populations of trout left anywhere in Norway.

Insert confused ecologist.

Read more

Investigating the Financial Costs of Invasive Species

Economic costs of biological invasions in the United Kingdom (2021) Cuthbert et al., NeoBiota, https://doi.org/10.3897/neobiota.67.59743

The Crux

I write near constantly about non-native species on Ecology for the Masses, but I mainly focus on the negative impacts that many of them have on native ecosystems. Yet often if we want to really kick off initiatives to manage invasive non-native species, we need to point out the financial burden that many of them bring.

Yet obtaining a simple monetary estimate for invasive species is not easy. A few particularly notorious invasives tend to take up a lot of research focus, which mean that there are many species out there for which our cost estimates could be unreliable. Likewise, we’re likely to have a better picture of the impact of non-native species which have been established longer than ones who have just arrived, and haven’t been sufficiently studied or haven’t spread far enough to have had a measurable impact.

But non-native species aren’t slowing down in their spread anytime soon, so it’s important to figure out what the costs of invasive non-native have been and will be, as well as where there are holes in our knowledge that need to be filled. That’s what today’s study set out to do, by looking at invasive species in the United Kingdom.

Read more

Wild Horses Couldn’t Drag Me Away (From The Fact That They’re Invasive)

A mob of feral horses at Yarangobilly, Australia (Image Credit: Ian Sanderson, CC BY-NC 2.0, Image Cropped)

Horses are, without a doubt, a hugely significant part of human culture and history. Worldwide, they’ve played the role of food source, beast of burden, war steed, postal service, transport, and in modern times pet and sports star. Horses were and in many places still are are an omnipresent part of life. People have a lot of feelings about them.

Read more

Do Disturbances Promote Biodiversity in the Presence of an Invasive Species?

Image Credit: Paresh Poriya, CC BY 4.0, Image Cropped (also not featuring tunicates)

Testing ecological theories in the Anthropocene: alteration of succession by an invasive marine species (2021) Christianson et al., Ecosphere, https://doi.org/10.1002/ecs2.3471

The Crux

Ecological disturbances, such as fire, floods, or storms, might seem like a catastrophe at first glance, but often they open up space for new species to take the place of dominant ones, creating a more diverse ecosystem. When a disturbance occurs matters as well – if a storm hits right before a particular species starts to reproduce, that species could take advantage of the extra space and become dominant in a short time.

In the 1970s, John Sutherland and Ronald Karlson tested this theory, looking at the invertebrate community of a coastal dock in North Carolina, USA. They found that which species dominated depended on when the community began to grow (a proxy for when disturbance opened up new space).

The area has since seen the introduction of an invasive species of tunicate, Clavelina oblonga. This week’s authors wanted to test whether the original patterns seen in the 1970s still showed up in the presence of the invader.

Read more

Investigating the Invader-Pollinator Paradox

Image Credit: Ted, CC BY-SA 2.0, Image Cropped

Invader-pollinator paradox: Invasive goldenrods benefit from large-size pollinators (2021) Moroń, et al., Diversity and Distributions, https://doi.org/10.1111/ddi.13221

The Crux

A plant that invades a new part of the world can’t necessarily bring its regular pollinators along with it. So it stands to reason that plants who successfully invade a new area receives pollination from native pollinators. Seems pretty straightforward, right?

Read more

Forecasting Worldwide Alien Invasions

Image Credit: Bernard Dupont, CC BY-SA 2.0, Image Cropped

Projecting the continental accumulation of alien species through to 2050 (2020) Seebens at al., Global Change Biology, DOI: 10.1111/gcb.15333

The Crux

A by-product of globalisation is that over the coming decades, no matter how many episodes of Border Patrol get recorded, new species are going to find their way into new habitats and potentially become invasive alien species, exerting negative effects on the locals. We’ve seen this in the past, and I’ve beaten many a dead horse writing about these species on this site.

What this paper set out to find is whether or not we can predict at what scale this trend will increase.

Read more

Forecasting Europe’s (Very Specific) Rodent Problem

Image Credit: Birgit, Pixabay Licence, Image Cropped

The potential current distribution of the coypu (Myocastor coypus) in Europe and climate change induced shifts in the near future (2020) Schertler et al., NeoBiota, https://doi.org/10.3897/neobiota.58.33118

The Crux

For all my talk on not immediately demonising alien species, there are a plethora of annoying little critters who the label ‘invasive’ was made for. This is the case with the Coypu, an annoying beaver-like rodent initially from South America who has since spread through other parts of the world, including large swathes of Europe.

The Coypu is a textbook invader – it reproduces quickly, and though individuals don’t stray far from rivers, as a species they are capable of expanding their range very quickly. They destabilise riverbanks through their burrowing, which can lead to severe ecological and economical damage.

They are, however, quite sensitive to temperature, and as such it’s important to know what the effects of climate change will have on their distribution. Today’s authors set out to come up with a habitat suitability map for the Coypu in light of the rise in temperature we’re expecting in the coming decades.

Read more

Aliens & Invaders & Exotics, Oh My: The Language of Invasive Biology

The Burmese python, which has spread throughout the Everglades in Florida as a result of accidental or intentional releases by pet owners (Image Credit: US NInvaders, Aliens, and tational Park ServicePublic Domain Mark 1.0, Image Cropped)

Language is important. It’s a lesson many biological scientists would have learned a long time ago if we hadn’t kept social sciences at such a wary arm’s length. Ecologists have a tendency to label and relabel ecological concepts (anyone up for a debate about the word ‘niche’?), species and even global phenomena (think global warming vs. climate change) based on anything from shifts in public perception to new findings that challenge our earlier labels.

Read more

« Older Entries