Fun Fact #1: Elephant seal blood has a high haemoglobin content (to help them make long, oxygen deprived, dives) which makes their blood BRIGHT red.

Fun Fact #2: This results in some pretty striking colours when blood is spilled. We tried to replicate it in the comic, but nothing matches the original (see below).

Tanya Strydom is a PhD student at the Université de Montréal, mostly focusing on how we can use machine learning and artificial intelligence in ecology. Current research interests include (but are not limited to) predicting ecological networks, the role species traits and scale in ecological networks, general computer (and maths) geekiness, and a (seemingly) ever growing list of side projects. Tweets (sometimes related to actual science) can be found @TanyaS_08.

Forecasting Foreign Fishy Futures

Forecasting the future establishment of invasive alien freshwater fish species (2021) Perrin et al., Journal of Applied Ecology,

The Crux

I know I write a lot about whether or not we should jump to conclusions about non-native species, but the fact is that there are lots of situations in which invasive species need to GO. Giving them the boot, however, can be a right pain, and more often than not it’s impossible.

But an ounce of prevention is worth a pound of cure (I don’t know the imperial system well so I assume that makes sense), and figuring out where an invader is likely to turn up means you can take measures to stop it happening in the first place. This saves a lot of hassle (and money) down the road.

So how do we figure out where invasives are likely to show up? That’s what this paper, which made up the first chapter of my thesis, aimed to find out, by looking at where invasive freshwater fish species have been popping up in Norway over the last 100 years.

Read more

When Is A Fish Really Native?

Image Credit: Alexandre Roux, CC BY-NC-SA 2.0, Image Cropped

Image Credit: Alexandre Roux, CC BY-NC-SA 2.0, Image Cropped

In the summer of 2019 I spent a week driving around south-east Norway with my Master’s student Bastian. The plan was to speak to local freshwater managers and get their take on invasive fish species in Norway. I’d never conducted this sort of research before, but I thought I knew what I was in for. Invasive bad, native good, right? More nuanced approaches are for those who are disconnected from the problem, academics like me who could watch from a distance and comment airily.

First interview. What does the term “invasive species” mean to you?

Obviously I expected some combination of “alien to the region”, “brandishes halberds and horned helmets” and “outcompetes the native trout” (trout and its fellow salmonids are really quite popular here). What I got instead (abridged) was a contemplative shrug and a reminder that there are almost no native populations of trout left anywhere in Norway.

Insert confused ecologist.

Read more

Location Location Location

Biotic interactions are more often important at species’ warm versus cool range edges, Paquette & Hargreaves, 2021 Ecology.

Image credit: Trey Ratcliff, CC BY-NC-SA 2.0

The Crux

In nature, we usually refer to the given area in which a species is found as a species range. The size of these vary, even between species that are very similar in appearance. For example, many of the dragonflies and damselflies I worked with during my PhD research could be found all over the state of Arkansas, but others had more limited ranges, and could only be found in the more southern lakes that I visited. Often, species are limited to these areas because the environmental conditions, such as temperature, are favorable to them, and the change in those conditions beyond the boundaries of their range will lead to them suffering. Knowing which factors limit the range of a given species is important for management policies, as knowing the temperature limits can inform predictions about the effects of climate change, while knowledge of natural enemies (like predators) can help with the containment of invasive species.

Previous work on the constraints experienced by species at their range limits tend to focus on abiotic factors (temperature, precipitation, etc.), as these data are easily quantified and there are very extensive records available. However, biotic factors (interactions with predators/competitors, the availability of prey) can also limit the range of a species. Though biotic factors are important, they are more difficult to quantify than abiotic factors, and are often species-specific. That is, the effect of a competitor on limiting the range of one species won’t be the same on another species. Interestingly, biotic interactions may be more important in warmer range limits, while the abiotic may be more important in the cooler range limits. Today’s authors used data from a number of studies to test just that idea.

Read more

Forecasting the Fate of an Ecosystem: The Double-Edged Sword of Predictive Modelling

Image Credit: Amy-Jo, Pixabay licence, Image Cropped

Let’s get the humblebragging out of the way – this week a paper that I wrote was published in the Journal of Applied Ecology. It was a paper that I genuinely enjoyed writing, and it gives a tangible outcome – the forecasting of the establishment of invasive species within a region. The applications are obvious. Knowing where an invasive species is likely to pop up lets us detect it early and take action quickly.

Yet that very tangibility of the outcome has resulted in it being the paper of which I most fear the consequences. So in an exorcism of my general nerves (and as a soft disclaimer), I wanted to talk about why forecasting or predicting anything can be such a complicated undertaking for an ecologist.

Read more

Bear-ly Moving

It’s Fat Bear Week!

An annual (as chosen by the fans) competition to find the bear who had the most summer gains in preparation for their winter downtime. As they won’t be coming out to forage during the winter months, the bears need to spend the summer months not only regaining that which they lost the previous winter but also shoring up their reserves for the coming winter. This means finding foods that are rich (fatty) and plentiful – salmon happen to tick both of these boxes and are one of the highly sought after snacks over the summer time.

Read More: Fat Bear Week

Check out the before and after shots of these cuddly teddies below!

Fat Bear Week 2021: Before-and-After Pictures of the Contenders

Although this year’s winner has already been voted for (all hail Otis) there is always next year to pick out your bracket and vote for the bear that you think deserves the honours of being the Fat Bear Champion.

Tanya Strydom is a PhD student at the Université de Montréal, mostly focusing on how we can use machine learning and artificial intelligence in ecology. Current research interests include (but are not limited to) predicting ecological networks, the role species traits and scale in ecological networks, general computer (and maths) geekiness, and a (seemingly) ever growing list of side projects. Tweets (sometimes related to actual science) can be found @TanyaS_08.

Hungry Hyenas Help Human Health

Image Credit: flowcomm, CC BY 2.0, Image Cropped

Public health and economic benefits of spotted hyenas Crocuta crocuta in a peri-urban system (2021) Sonawane et al., Journal of Applied Ecology,

The Crux

The natural world provides as with a laundry list of health services, from cleaning the water we drink to providing blueprints for cutting edge medicine. Yet on this list of ecosystem services, carnivores often get left by the wayside. One such carnivore is the spotted hyena, which can be found roaming the outskirts of many towns in eastern Africa. The hyenas are adept scavengers, and clear away massive amounts of discarded meat every year, potentially preventing the spread of carcass-borne diseases like anthrax and tuberculosis.

Yet as with many predators, hyenas have often been feared, whether as a result of their historical association with evil spirits or more recent unfavourable portrayals. In a world where carnivores like wolves, dingoes and bears are often feared and driven off, providing proof of the benefits they bring is crucial. So that’s what today’s researchers set out to do.

Read more

The Ecology of The Lion King (With Lion Specialist Maria Gatta)

Image Credit: Wade Tregaskis, CC BY-NC 2.0, Image Cropped.

If there’s one film that I could perhaps credit for sparking my fascination with the natural world, the it’s The Land Before Time. BUT if we’re going with films that do not feature the most gangly Pachycephalosaurids you ever did see, then it has to be The Lion King. The sweeping landscapes, the (at times literal) fountains of species, the Shakespearian drama, the poor understanding of trophic cascades – it’s got it all.

Read more

The Effects of Reproduction on Coexistence

Image credit: Charles J. Sharp, CC BY-SA 4.0

When ecology fails: how reproductive interactions promote species coexistence (2021), Gómez-Llano et al., Trends in Ecology and Evolution.

The Crux

Scientific literature, like many different aspects of society and culture, goes through periods where a given subject/topic is more prominent in the public conscience than others. Lately, the question of coexistence has been at the forefront of the minds of many community ecologists. Coexistence is the state in which two or more species can each maintain a population in the same habitat as each other, provided that the environmental conditions and species interactions that they experience remain stable. Many studies of coexistence have investigated how differences among coexisting species allow them to maintain their coexistence, which makes sense, as it’s hard to coexist with another species if they require the exact same food or habitat as you do.

Yet there are a lot of examples of coexisting species that seem to be almost identical. Some researchers have suggested that these networks of similar species are unstable and should break down over time. But are these groups of species truly doomed? Or are there other processes maintaining this seemingly unlikely coexistence?

Today’s authors suggest that reproductive interactions among species are what may allow such similar species to continue coexisting. While much of the work in this area is theoretical rather than empirical (see Did You Know?), the authors reviewed what empirical evidence they could. Today’s paper is a review (a paper that summarizes lots of previously published papers with the goal of synthesizing knowledge), so I will briefly touch on the main points as put forward by the authors.

Read more

3D Printing: A Future For Studies In Ecology And Evolution

With mentions in scientific journals skyrocketing over the last few years, 3D printing is rapidly becoming a buzzword in many scientific fields. Ecology and evolution are getting in on the game too, with applications in the laboratory, field, and teaching. So as a primer to those not yet introduced to such methods, let’s cover the broad types of 3D printing and have a look at some examples where such technologies have provided novel approaches to ecological research questions, and how we may advance such techniques into the future.

Read more
« Older Entries