Tag Archives: selection

Fading Into the Background

Mostly limited to ocean animals, transparency is thought to help escape predators by blending the animal in with its environment, but is this what actually happens? (Image Credit: birdphotos.com, CC BY 3.0, Image Cropped)

Transparency reduces predator detection in mimetic clearwing butterflies (2019) Arias et al., Functional Ecology, https://dx.doi.org/10.1111/1365-2435.13315

The Crux

Predators are one of the strongest forces of selection in the natural world, and as a result it can be quite costly to stand out and be more easily noticed. This means that in order to survive, animals must adapt to avoid predators. Besides running away from what is trying to eat you, your best bet is to evolve body coloration that helps you avoid being seen by a predator.

Animals that rely on blending in will match the color or even the texture of their backgrounds, but when prey species live in areas where they cannot easily blend in (like plankton in the water column) they often evolve to be transparent. Unlike their marine counterparts, transparency is normally rare in terrestrial animals. The clearwing butterfly is one notable exception to this rule, and the authors of today’s paper wanted to test whether or not these clear wings actually reduce predation.
Read more

Monitoring Freshwater Populations in the Chernobyl Exclusion Zone

Radiation can have extremely negative effects on an individual. But is it as easy to measure its effects on an entire population? (Image Credit: Hnapel, CC BY-SA 4.0, Image Cropped)

Variation in chronic radiation exposure does not drive life history divergence among Daphnia populations across the Chernobyl Exclusion Zone (2019) Goodman et al., Ecology and Evolution, DOI: 10.1002/ece3.4931

The Crux

As anyone who has recently watched HBO’s Chernobyl can tell you, large doses of radiation are capable of doing some pretty serious damage to an organism. But whilst examining the effect of radiation on an individual might be simple, monitoring those effects on a population can be difficult. Whilst radiation negatively effects fitness, it can also help individuals with higher radiation tolerance to reproduce and dominate within the population of a single species, making it difficult to monitor the exact effects of radiation on that population. If a population is filled with only those who were strong enough to survive, you don’t get an idea of the variation in the radiation’s effects.

This week’s researchers tried to break through that problem by looking at different populations of a water flea in Chernobyl’s Exclusion Zone (CEZ) – the area still barred from entry in eastern Europe.

Read more

To Blend in or Stand Out?

Body coloration of an animal can be useful for not only attracting prey, but also avoiding being eaten. One important question is whether or not this coloration can simultaneously serve both purposes? (Image Credit: Chen-Pan LiaoCC BY-SA 3.0, Image Cropped).

Multifunctionality of an arthropod predator’s body coloration (2019) Liao et al., Functional Ecology, https://dx.doi.org/10.1111/1365-2435.13326

The Crux

One topic that has interested ecologists for decades is that of animal body coloration, and what function that coloration can serve for the animal. Despite this fascination and the work that has been done to study this aspect of animal biology, the actual mechanisms driving the evolution and maintenance of body color are not well understood. Many different aspects of an organism’s life can shape and affect body color, such as avoiding predators, attracting mates, and whatever resources an organism has available to create specific colors. In addition, many of these aspects often compete with one another, such that a color that is good for attracting mates may also make you more easily-spotted by a predator.

Spiders provide an excellent system in which to study the evolutionary significance of body colors, as previous work has shown that body color affects mate attraction, predator avoidance, and prey attraction. The authors of today’s study wanted to know if these complex color patterns could serve more than one function in the spider’s life.
Read more

Hvorfor er dyr hvor de er?

Image Credit: Endre Gruner Ofstad, CC BY-SA 2.0

Guest post by Endre Grüner Ofstad. English version here.

Use, selection, and home range properties: complex patterns of individual habitat utilization (2019) Endre Ofstad et al., Ecosphere, 10(4), https://doi.org/10.1002/ecs2.2695

Det essensielle

Stedene man finner dyr omtales gjerne som dyrets habitat. Habitat er et relativt vagt begrep. Hvor individ oppholder er som regel et utfall av en rekke vurderinger: hvor finner en mat, hvor unngår man rovdyr og hvor finner man noen å parre seg. Individ avveier blant disse for å maksimere hvor mange avkom de kan tilføre fremtidige generasjoner (også kalt for ‘fitness’).

Når vi skal vurdere hvilke habitat dyr befinner seg i så jobber vi som regel med habitatseleksjon. Habitatseleksjon er hvor mye et habitat blir brukt i forhold til hvor tilgjengelig det er, dvs. hva er den relative sannsynligheten for at et dyr vil bruke et habitat hvis det får muligheten. Hvor mye tid et individ velger å bruke (eller tettheten av individ) i et habitat er som regel en god indikator på hvor viktig et gitt habitat er. Habitatseleksjon blir derfor ofte brukt til å identifisere hvilke habitat forvaltningen bør iverksette tiltak.

Read more

Why are animals where they are?

Image Credit: Endre Gruner Ofstad, CC BY-SA 2.0

Guest post by Endre Grüner Ofstad. Norwegian version available here.

Use, selection, and home range properties: complex patterns of individual habitat utilization (2019) Endre Ofstad et al., Ecosphere, 10(4), https://doi.org/10.1002/ecs2.2695

The Crux

The areas in which we find an animal is often called its ‘habitat’. Yet it’s a fairly ambiguous term. Where animals are found is usually the outcome of a range of considerations, primarily foraging, predator avoidance and mating opportunities. Animals trade-off among these in order to maximise their contribution to future generations (i.e. ‘fitness’).

When considering which habitats we most likely find animals one often works with habitat selection. Habitat selection is how much a certain habitat type is used compared to its availability, i.e. what is the relative probability that an animal will use a given habitat upon encounter. The amount of time an individual spends (or density of individuals) in a habitat is usually a good proxy for the importance the habitat to the animals. Therefore we often use this to evaluate which areas to target for management and conservation efforts.

Read more

The Ecology of a Big Gorilla Wolf Motherf***er

Image Credit: Attack the Block, 2011

We examine the ecology of the BGWMs of 2011’s Attack the Block. Sexual ecology has never been more furry. Or glow-in-the-dark. Actually sexual ecology can get pretty furry. Also we have two fights this week.

3:05 – The Chimera in Cinema
11:41 – Ecology of a BGWM
38:38 – BGWMs vs. Liam Neeson from The Grey

You can also find us on iTunes and Google Play.

Blending In

In nature, it often pays to blend in to your background, especially if you’re a prey species like the deer mice used in this study. (Image Credit: Gregory Smith, CC BY-SA 2.0, Image Cropped)

Linking a mutation to survival in wild mice (2018) Barret et al. Science, 363, p. 499-504.

The Crux

A big part of ecological studies involves investigating how certain traits or behaviors work (adapted) or don’t work (maladapted) in a specific environment, while scientists who study genetics may investigate specific parts of the DNA that are under selection for specific values of a given trait. Surprisingly, not many studies investigate these two aspects of natural selection simultaneously, instead they will attribute selection to a specific trait value without knowing the genetic mechanisms behind it.

The authors of this study used a well-studied model system of deer mice (Peromyscus maniculatus) to link these two aspects of ecology together, tying a mutation in a gene that codes for coat color into selection in the wild. The study took place in the Sand Hills of Nebraska, a relatively young region (in geological terms) where these mice are expected to have recently adapted to the environment due to strong selection for traits that promote their survival.

Read more

« Older Entries