Tag Archives: selection

Working Together

Ant collective behavior is heritable and shaped by selection (2020) Walsh et al., The American Naturalist, https://doi.org/10.1086/710709

Image Credit: Землеройкин, CC BY-SA 4.0

The Crux

Working together to achieve a common goal is nothing new to us. We as humans are famously social organisms that not only crave interactions with others, but quite often succeed due to the way that we work together. Interestingly, we tend to work well when we have some form of organizations or leadership, but there are other animals that do not require such leadership. This so-called “collective behavior” is the behavior of a group that emerges without a form of central control. Think of a large school of fish avoiding a predator at the same time, or birds flocking together and flying through the sky. All of this happens as a result of those animals interacting with one another, not because there is some boss animal telling them to do it.

Not surprisingly, groups of animals will vary in their exact method of collective behavior. It’s assumed that this variation is largely dependent on natural selection, but there isn’t actually much that is known about it. For this variation in behavior to have been the result of natural selection, the variation itself has to be advantageous and heritable, meaning that it is better to have the variation and you can then pass it on to your offspring. Today’s authors wanted to measure just that.

Read more

Form Versus Function

Image Credit: Graham Wise, CC BY 2.0, Image Cropped

Sexual differences in weaponry and defensive behavior in a neotropical harvestman (2018) Segovia et al., Current Zoology, https://doi.org/10.1093/cz/zoy073

QUICK NOTE: Harvestmen (aka Daddy Long Legs in North America) are NOT spiders! Despite the false myth that they can’t bite you due to short fangs, harvestmen aren’t even venomous. They can’t hurt you! There, now that I got that off my chest…

The Crux

Sexual dimorphism is a common phenomenon in nature whereby male and female members of a given species differ from one another physically. Think of the large bull moose or elk with its antlers, peacocks and their colorful tails, or the larger horns of male stag beetles. Because of these differences, natural selection is able to act on both their behavioral and functional differences. That is to say, differences in performance and morphology mean that males and females of the same species may experience differential selection pressures. As a result, males and females could be expected to react differently to the same challenge, such as a predator.

Harvestmen (known in North America as Daddy-Long-Legs) are a group of arachnids that, although bearing a resemblance to and being commonly mistaken for spiders, are not actually spiders. They belong to a group called Opiliones. Some males of this group have thicker legs with pronounced spines, used in male-to-male competition and anti-predator defenses. In addition to using these spines against predators, these arachnids also engage in thanatosis (“playing dead”, see Did You Know?) and use chemical defenses. Due to these morphological differences, the authors hypothesized that males and females would differ in their response to predators.

Read more

On Moose Who Reproduce: To Use Or Not To Use

Guest post by Endre Grüner Ofstad

Opposing fitness consequences of habitat use in a harvested moose population (2019) Ofstad, Markussen at al., Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.13221

The Crux

At the heart of our understanding of animal behaviour is Optimal Foraging Theory. It’s related to the core concepts of population ecology, and essentially asks which life history trait a species is more concerned with – survival or reproduction. For instance, often for a herbivore, the areas where they will find the most food is also the area where the most predators will be lurking. This presents them with two options – eat lots, reproduce a lot, and die young, or eat less, reproduce less (at least per year) and live longer.

On a species level we can compare mice and elephants. Yet these differences also occur within species and populations. Some individuals are more prone to high-risk strategies, while others prefer the low-risk strategy. Which strategy is the best will depend on the prevailing environment. For instance, a situation with few predators (or hunters) will favour the more risk-prone strategy, while a strong presence of predators will favour the risk-averse strategy. Populations who experience environmental variations are expected to have a composition of strategies that varies accordingly. 

Read more

Fading Into the Background

Mostly limited to ocean animals, transparency is thought to help escape predators by blending the animal in with its environment, but is this what actually happens? (Image Credit: birdphotos.com, CC BY 3.0, Image Cropped)

Transparency reduces predator detection in mimetic clearwing butterflies (2019) Arias et al., Functional Ecology, https://dx.doi.org/10.1111/1365-2435.13315

The Crux

Predators are one of the strongest forces of selection in the natural world, and as a result it can be quite costly to stand out and be more easily noticed. This means that in order to survive, animals must adapt to avoid predators. Besides running away from what is trying to eat you, your best bet is to evolve body coloration that helps you avoid being seen by a predator.

Animals that rely on blending in will match the color or even the texture of their backgrounds, but when prey species live in areas where they cannot easily blend in (like plankton in the water column) they often evolve to be transparent. Unlike their marine counterparts, transparency is normally rare in terrestrial animals. The clearwing butterfly is one notable exception to this rule, and the authors of today’s paper wanted to test whether or not these clear wings actually reduce predation.
Read more

Monitoring Freshwater Populations in the Chernobyl Exclusion Zone

Radiation can have extremely negative effects on an individual. But is it as easy to measure its effects on an entire population? (Image Credit: Hnapel, CC BY-SA 4.0, Image Cropped)

Variation in chronic radiation exposure does not drive life history divergence among Daphnia populations across the Chernobyl Exclusion Zone (2019) Goodman et al., Ecology and Evolution, DOI: 10.1002/ece3.4931

The Crux

As anyone who has recently watched HBO’s Chernobyl can tell you, large doses of radiation are capable of doing some pretty serious damage to an organism. But whilst examining the effect of radiation on an individual might be simple, monitoring those effects on a population can be difficult. Whilst radiation negatively effects fitness, it can also help individuals with higher radiation tolerance to reproduce and dominate within the population of a single species, making it difficult to monitor the exact effects of radiation on that population. If a population is filled with only those who were strong enough to survive, you don’t get an idea of the variation in the radiation’s effects.

This week’s researchers tried to break through that problem by looking at different populations of a water flea in Chernobyl’s Exclusion Zone (CEZ) – the area still barred from entry in eastern Europe.

Read more

To Blend in or Stand Out?

Body coloration of an animal can be useful for not only attracting prey, but also avoiding being eaten. One important question is whether or not this coloration can simultaneously serve both purposes? (Image Credit: Chen-Pan LiaoCC BY-SA 3.0, Image Cropped).

Multifunctionality of an arthropod predator’s body coloration (2019) Liao et al., Functional Ecology, https://dx.doi.org/10.1111/1365-2435.13326

The Crux

One topic that has interested ecologists for decades is that of animal body coloration, and what function that coloration can serve for the animal. Despite this fascination and the work that has been done to study this aspect of animal biology, the actual mechanisms driving the evolution and maintenance of body color are not well understood. Many different aspects of an organism’s life can shape and affect body color, such as avoiding predators, attracting mates, and whatever resources an organism has available to create specific colors. In addition, many of these aspects often compete with one another, such that a color that is good for attracting mates may also make you more easily-spotted by a predator.

Spiders provide an excellent system in which to study the evolutionary significance of body colors, as previous work has shown that body color affects mate attraction, predator avoidance, and prey attraction. The authors of today’s study wanted to know if these complex color patterns could serve more than one function in the spider’s life.
Read more

Hvorfor er dyr hvor de er?

Image Credit: Endre Gruner Ofstad, CC BY-SA 2.0

Guest post by Endre Grüner Ofstad. English version here.

Use, selection, and home range properties: complex patterns of individual habitat utilization (2019) Endre Ofstad et al., Ecosphere, 10(4), https://doi.org/10.1002/ecs2.2695

Det essensielle

Stedene man finner dyr omtales gjerne som dyrets habitat. Habitat er et relativt vagt begrep. Hvor individ oppholder er som regel et utfall av en rekke vurderinger: hvor finner en mat, hvor unngår man rovdyr og hvor finner man noen å parre seg. Individ avveier blant disse for å maksimere hvor mange avkom de kan tilføre fremtidige generasjoner (også kalt for ‘fitness’).

Når vi skal vurdere hvilke habitat dyr befinner seg i så jobber vi som regel med habitatseleksjon. Habitatseleksjon er hvor mye et habitat blir brukt i forhold til hvor tilgjengelig det er, dvs. hva er den relative sannsynligheten for at et dyr vil bruke et habitat hvis det får muligheten. Hvor mye tid et individ velger å bruke (eller tettheten av individ) i et habitat er som regel en god indikator på hvor viktig et gitt habitat er. Habitatseleksjon blir derfor ofte brukt til å identifisere hvilke habitat forvaltningen bør iverksette tiltak.

Read more

Why are animals where they are?

Image Credit: Endre Gruner Ofstad, CC BY-SA 2.0

Guest post by Endre Grüner Ofstad. Norwegian version available here.

Use, selection, and home range properties: complex patterns of individual habitat utilization (2019) Endre Ofstad et al., Ecosphere, 10(4), https://doi.org/10.1002/ecs2.2695

The Crux

The areas in which we find an animal is often called its ‘habitat’. Yet it’s a fairly ambiguous term. Where animals are found is usually the outcome of a range of considerations, primarily foraging, predator avoidance and mating opportunities. Animals trade-off among these in order to maximise their contribution to future generations (i.e. ‘fitness’).

When considering which habitats we most likely find animals one often works with habitat selection. Habitat selection is how much a certain habitat type is used compared to its availability, i.e. what is the relative probability that an animal will use a given habitat upon encounter. The amount of time an individual spends (or density of individuals) in a habitat is usually a good proxy for the importance the habitat to the animals. Therefore we often use this to evaluate which areas to target for management and conservation efforts.

Read more

The Ecology of a Big Gorilla Wolf Motherf***er

Image Credit: Attack the Block, 2011

We examine the ecology of the BGWMs of 2011’s Attack the Block. Sexual ecology has never been more furry. Or glow-in-the-dark. Actually sexual ecology can get pretty furry. Also we have two fights this week.

3:05 – The Chimera in Cinema
11:41 – Ecology of a BGWM
38:38 – BGWMs vs. Liam Neeson from The Grey

You can also find us on iTunes and Google Play.

Blending In

In nature, it often pays to blend in to your background, especially if you’re a prey species like the deer mice used in this study. (Image Credit: Gregory Smith, CC BY-SA 2.0, Image Cropped)

Linking a mutation to survival in wild mice (2018) Barret et al. Science, 363, p. 499-504.

The Crux

A big part of ecological studies involves investigating how certain traits or behaviors work (adapted) or don’t work (maladapted) in a specific environment, while scientists who study genetics may investigate specific parts of the DNA that are under selection for specific values of a given trait. Surprisingly, not many studies investigate these two aspects of natural selection simultaneously, instead they will attribute selection to a specific trait value without knowing the genetic mechanisms behind it.

The authors of this study used a well-studied model system of deer mice (Peromyscus maniculatus) to link these two aspects of ecology together, tying a mutation in a gene that codes for coat color into selection in the wild. The study took place in the Sand Hills of Nebraska, a relatively young region (in geological terms) where these mice are expected to have recently adapted to the environment due to strong selection for traits that promote their survival.

Read more

« Older Entries