Tag Archives: biodiversity

Good News In Case Watching the Ocean Burn Got You Depressed

Image Credit: U.S. Fish and Wildlife Service Headquarters, CC BY 2.0, Image Cropped

It’s been an awful week for the environment. If you’ve missed some of the news from the past four or five days, congratulations. But since climate-related depression is a very real thing, and there ARE always some success stories out there regarding the climate and our planet’s biodiversity, I thought I’d take this chance to share some positive stories from around the world.

Read more

The Importance of Green Spaces in a Locked Down World

Image Credit: Mariia Honcharova, CC BY 2.0, Image Cropped

Back to nature: Norwegians sustain increased recreational use of urban green space months after the COVID-19 outbreak (2021) Venter et al., Landscape and Urban Planning, https://doi.org/10.1016/j.landurbplan.2021.104175

The Crux

Getting out and spending time in green spaces can have a number of benefits for people, which have been recently shown to include benefits for mental health. It can also foster a connection with nature, which can improve our relationship with the natural world going forward.

When the COVID pandemic hit last year, people all across the world were forced into lockdown. Yet in many places, getting out and spending time in nature was still an option. So did people in these areas increase their use of green spaces during the pandemic? And was this maintained after lockdown?

Read more

Better Means Faster

Species interactions have predictable impacts on diversification (2021) Zeng and Wiens, Ecology Letters. https://doi.org/10.1111/ele.13635

Image Credit: MacNeil Lyons/NPS, CC BY 2.0

The Crux

No organism on the planet lives in complete isolation from other organisms. Many organisms serve as a food source for others, and even apex predators have to compete for their food. Species interactions like predation, competition, and parasitism directly impact organisms in their daily lives, but there is also a possibility that these same species interactions have had an impact on much longer timescales. That is, species interactions may have had a direct effect on the diversity of life on our planet.

Species interactions have been previously shown to affect diversification rates (see Did You Know?), so the question that today’s authors asked was whether there is a general trend to the effects of species interactions on diversification rates? Specifically, do species interactions with negative fitness (such as being killed by a predator) impacts decrease diversification rates, and do species interactions with positive fitness (such as successfully parasitizing a host) impacts increase diversification rates?

Read more

A Story About Mortality: The Evolution of Aging and Death

A flatworm (Pseudocerus liparus) crawling on a sponge – passing through a forest of hydroids and tunicates. (Image credit: Christa Rohrbach, CC BY-NC-SA 4.0)

Last week I posted an article about fascinating creatures that escape death almost completely, including the famous “immortal jellyfish” (link below). Yet while the jellyfish’s attitude to aging is awe-inspiring, its existence poses a more obvious, yet perplexing question: why do we age?

Read more

A Story About Mortality: What Jellyfish Can Teach Us

The hydromedusa of Podocoryna borealis. (Image credit: Lara Beckmann, NorHydro, CC BY-SA 4.0)

Our existences are often centered around the hope that we will live a long and fulfilled life. At the same time, while we aim to grow old, many of us abhor the aging process, dreaming of remaining young and healthy for as long as possible. It explains why we are so fascinated by the concept of immortality. Think of vampire stories, constant quests for the fountain of youth, or even the newest anti-aging products in the drugstore next door. But apart from the few extra years we gain nowadays through modern medicine and improved life circumstances, many of us can’t extend our lives much further.

We share this fate with many other animals that go through the stages of birth, growth, reproduction and death. But despite that, we don’t need to rely on science-fiction to get a glimpse of everlasting life: some organisms on our planet don’t follow these stages and some cheat it altogether – escaping death almost completely.

Read more

Wilderness: A Place of Untouched Ecological Processes

Image Credit: European Wilderness Society, CC BY 4.0, Image Cropped

What comes to your mind when you think of Wilderness? Maybe it is a dense rainforest filled with a cacophony of bird calls, or plain filled with lagre grazing animals and free-roaming carnivores? They certainly qualify, but by definition, Wilderness is any area that hasn’t (or has only slightly) been modified by human activity in the past. This means that Wilderness areas can be incredibly diverse, from the aforementioned tropical forest to a murky swamp. These areas represent nature in its purest form, with the absence of human interventions allowing for dynamic, open-ended natural processes. These processes not only create marvelous landscapes and offer refuge for species, but also provide many benefits for humans.

Read more

From Tiny Polyps to the Origin of Stem Cell Research

Polyps of Schuchertinia allmanii. (Image Credit: Luis Martell, CC BY 4.0)

Polyps of Schuchertinia allmanii. (Image Credit: Luis Martell, CC BY 4.0, Image cropped)

Earth is a fountain of incredible abundances and varieties of life-forms, with many of them still undiscovered. Biodiversity is a key pillar for our life as we know it, and we are not only a small fraction of it, but also use and harness this richness for the benefit of our own species’ advancement. Many human advances are based on other organisms’ attributes and talents, which is why we use certain species as “model organisms” when pioneering scientific breakthroughs. One example of such a specific form of life has helped us make some serious inroads into forms of regeneration and even immortality over the last few billion years ago, and leading us to great discoveries in science.

Read more

How Well Do Biodiversity Experiments Represent The Real World?

The results of biodiversity–ecosystem functioning experiments are realistic (2020) Jochum et al., Nature Ecology and Evolution, https://doi.org/10.1038/s41559-020-1280-9

The Crux

Testing how different measures of biodiversity contribute to important ecosystem functions, like carbon cycling or tree decomposition, are crucial to our understanding of how the loss of species will impact both local and global ecosystems. Yet these studies are hard to undertake in the real world, since species come and go all the time, and constantly accounting for important environmental factors like temperature or sunshine can be near impossible. It makes understanding exactly what is driving those important ecosystem functions difficult.

To get around this, researchers often set up more controlled experiments, filled with different plots containing random assemblages of species often found in the wild. Since there are different communities in each plot, but each is subject to similar environmental conditions, they can examine the different levels of ecosystem functioning within the different plots and start to understand the differences. But since they’re taking random species of plants, is this even useful as an indicator of what’s going on in the ‘real world’? That’s what today’s researchers tested.

What They Did

The authors looked at two long-term grassland experiments, one based in Jena Germany, the other in Cedar Creek, USA. They compared different metrics of biodiversity (like species richness and taxonomic diversity) of the plots to similar areas in the nearby region. They used these comparisons to determine which of the plots in the controlled experiments were ‘realistic’.

Additionally, they compared whether the relationships between the biodiversity of the controlled plots and some of the key ecosystem functions remained the same when the unrealistic plots were removed from the analysis.

Did You Know: The Cedar Creek Experiment

The Cedar Creek experiment mentioned here is actually a smaller experiment taking place at the Cedar Creek Ecosystem Science Reserve. The Reserve has been a massive undertaking, first established in 1942 by the university of Minnesota. It includes literally thousands of long-term experimental plots set up by different researchers, and has contributed an immeasurable amount to our understanding of plant community ecology.

What They Found

The experimental plots showed a wider variety of communities than the real-world plots, but nestled within that variety were a large number of communities very similar to the real-world plots. Experimental plots tended to be much more similar to the real-world plots when they were not weeded, suggesting that human interference could create key differences between the two, as opposed to surrounding environmental conditions.

The researchers classed 28% and 77% of the Jena and Cedar Creek experiments as realistic, respectively. The relationships between biodiversity and ecosystem functioning remained relatively similar when removing the 23% of unrealistic Cedar Creek plots from analysis, however there was some variation in the relationship when removing the unrealistic plots from the German analysis (though many relationships remained similar).

Problems

The scope of this paper is massive, but it’s important to remember that the scale of these experiments were fairly local, and only dealt with one habitat type. That’s not to downplay the results, since this sort of experiment can of course be scaled up and repeated in other ecosystems. However a lot of the communities studied here both in the real-world and the experiments were quite species poor, so it would be interesting to see how similar research coped with more diverse ecosystems.

So What?

This research is tremendously encouraging (and probably let some researchers breathe a sigh of relief), as it validates the work that both the Cedar Creek and Jena teams have been doing to decades now. And whilst only a subset of their plots might be ‘realistic’, those unrealistic plots still tell us a great deal about potential future scenarios that could come about as a result of climate change or species migrations. Even knowing which plots are realistic will probably be very helpful for experiments going forward.

Sam Perrin is a freshwater ecologist currently completing his PhD at the Norwegian University of Science and Technology who is not fan of botany but concedes that it must have place somewhere in science. You can read more about his research and the rest of the Ecology for the Masses writers here, see more of his work at Ecology for the Masses here, or follow him on Twitter here.

Title Image Credit: Обновить фото обложки სანდრო აბაშიშვილი, CC0 1.0

Rebuilding Our Relationship With Urban Rivers With Dr. Cecilia Medupin

Rivers have played a monumental role in determining where people live. Their importance in providing water, transportation and a raft of other ecosystem services has meant that even today most of the world’s largest cities are situated close to a major source of freshwater, from Sydney to Delhi, Quebec to Karachi.

Yet despite their role in our history, urban rivers today are often facing increasing levels of pollution as a result of human activity. As well as often being a huge tourist drawcard, and an ongoing resource for fishers, joggers and portable BBQ toters, freshwater ecosystems carry a disproportionate number of aquatic species, which makes this trend increasingly worrying.

After meeting at last year’s British Ecological Society Annual Meeting, I got in touch with Dr. Cecilia Medupin, a freshwater ecologist at the University of Manchester. Cecilia works to increase peoples understanding of rivers, including the project Our Rivers, Our City. I asked Cecilia abut our connection with rivers, the challenges they face, and how to inspire research and change in urban rivers.

Read more

« Older Entries