Tag Archives: forest

What’s In A Wolf Scat? New DNA-Based Method To Detect Prey From Carnivore Scats

This is a guest post by Cecilia di Bernardi.

Image Credit: Rick Heeres, CC BY 2.0, Image Cropped

Multiple species-specific molecular markers using nanofluidic array as a tool to detect prey DNA from carnivore scats (2021) Di Bernardi et al., Ecology & Evolution. https://doi.org/10.1002/ece3.7918

The Crux

Studying carnivore diet can be a crucial tool to inform both management and conservation of predators and their prey. If we’re going to ensure a carnivore’s survival, we need to know which species it relies on for food, and in what quantities.

Digging into an animal’s stomach isn’t the nicest way to get the crucial data we’re looking for, so non-invasive sampling of scats (that’s science for poop) has for been a more ideal approach to collecting valuable information on the occurrence, genetics, and diet of animals, especially when dealing with elusive and threatened species. Nowadays, DNA-based analyses of scats are allowing researchers to get more and more high-resolution data on predators’ food habits.

What We Did

We developed a DNA-based method to detect prey from wolf scats, taking advantage of the huge leaps the DNA analysis has been through in recent years. We also made use of nanotechnology (specifically Nanofluidic array technology fromFluidigm Inc.), which has been useful for detecting pathogen species in ticks, or traces of herbivores on browsed twigs, but has never applied to detect prey from predator scats!

Starting from the big bank of DNA sequences available online (GenBank, NCBI), we looked at specific areas of the genome, (the mitochondrial genome), in order to tell apart the different target prey species present in the wolf scat. We developed species-specific molecular markers (see Did You Know?) and tested them with reference tissue samples, kindly provided by the Swedish Museum of Natural History. After the protocol development and optimization, we ended up with a set of 80 markers for our 18 target species. We then applied the newly developed molecular method on a pilot sample of wolf scats collected in the field.

Did You Know: Molecular Markers

Since any species’ genome is an incredibly long sequence, scientists have developed more efficient ways of defining what DNA belongs to which species. The motivation is simple – if you’re trying to tell whether a genome belongs to a human or to a chimpanzee, you don’t want to be looking through the 99% of DNA we have in common, you want to go straight to that 1%. That’s why scientists develop ‘markers’. It helps them narrow down their search and identify species much more quickly.

What We Found

The molecular markers we developed did their job well, correctly detecting the 18 prey species, showing an overall good distinction between the tissue samples of the target and non-target species. In other words, this means that a tissue sample taken from a moose was detected by the moose markers but not by the reindeer markers, which is the sign of a successful marker!

When applied to the pilot of wolf scats collected in the wild, the method detected a total of 16 species, comprising wild ungulates (moose, roe deer, red deer, fallow deer, wild boar), domestic and semi-domestic animals (reindeer, cattle, sheep), small prey species (European badger, European hare, mountain hare, Western capercaillie, black grouse), and other carnivores (Eurasian lynx, wolverine, red fox).

Just because fox DNA turns up in a wolf scat, it doesn’t mean that a wolf has eaten a fox – it could simply mean tha a fox has urinated on the scat! (Image Credit: Joanne Redwood, CC0 1.0)


While the method detects the target species as we’d like, it cannot distinguish whether predation, scavenging, or territorial marking has occurred. Detection of fox DNA in wolf scats can mean a wolf predating on a fox, a wolf scavenging on a fox, but also a fox marking with its urine on a wolf scat! To partly disentangle this aspect, we are investigating the contribution of scavenging to wolves diet in Scandinavia, with data from GPS-collared wolves.

So What?

This molecular method, with its high-resolution prey detection, can help better understanding under what circumstances wolves eat certain prey and how that can affect ungulate populations, serving as a valuable complement to the current GPS technology used to investigate wolf predation. Wolf natural expansion is an ongoing and controversial phenomena in the Northern hemisphere, and any technique that tells us more about their impact is a welcome addition to our knowledge base.

Cecilia Di Bernardi is an ecologist who is currently investigating wolf predation ecology within her PhD at the University of Rome La Sapienza in collaboration with SLU Swedish University of Agricultural Sciences. You can follow her on Twitter @c_dibernardi.

The Importance of Green Spaces in a Locked Down World

Image Credit: Mariia Honcharova, CC BY 2.0, Image Cropped

Back to nature: Norwegians sustain increased recreational use of urban green space months after the COVID-19 outbreak (2021) Venter et al., Landscape and Urban Planning, https://doi.org/10.1016/j.landurbplan.2021.104175

The Crux

Getting out and spending time in green spaces can have a number of benefits for people, which have been recently shown to include benefits for mental health. It can also foster a connection with nature, which can improve our relationship with the natural world going forward.

When the COVID pandemic hit last year, people all across the world were forced into lockdown. Yet in many places, getting out and spending time in nature was still an option. So did people in these areas increase their use of green spaces during the pandemic? And was this maintained after lockdown?

Read more

Adaptation of Forests to Climate Change: Is It Possible?

Urbión Model Forest in Castilla y León, Spain (Image Credit: Julia Ramsauer)

In a world in which it’s still tough to convince many people that climate change is a very real phenomena, figuring out ways to tackle climate change is an even more difficult problem to wrap our heads around. In general, there are two strategies we can use: (1) mitigation (reducing the accumulation of greenhouse gases in the atmosphere) and, (2) adaptation (reducing the vulnerability of societies and ecosystems facing the impacts of climate change).

In my last piece (linked here), I wrote about the effects of climate change on forests. But what about the reverse, and their potential to mitigate climate change? Forests are crucial for climate change mitigation – they literally suck carbon out of the atmosphere. At the same time, forest adaptation will be necessary to avoid degradation of forest ecosystems due to a changing climate: an extremely complex task.

Read more

Fighting Climate Change While Maintaining Biodiversity: Can It Be Done?

Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action (2019) Soto-Navarro et al., Philosophical Transactions of the Royal Society B, https://doi.org/10.1098/rstb.2019.0128

The Crux

With the world under so many anthropogenic pressures simultaneously, trying to come up with management solutions for different issues can be a problem. Climate change and biodiversity are a great example. Storing carbon is a great way to reduce the effects of climate change, and increasing the range of forests worldwide is a great way to increase carbon storage. Yet the sort of forests that store carbon most efficiently are often poor at promoting biodiversity. They are largely made up of very similar trees, while forests that include brush, scrubs, and other layers often store less carbon, but house more biodiverse communities.

As such, finding areas that are prime specimens for a) storing carbon and b) biodiversity conservation are incredibly important, so that managers at every level (from park rangers right up to the Intergovernmental Panel on Climate Change) can know where interests overlap, and adjust plans accordingly.

Read more

The Unseen Effects of Habitat Loss

Whilst climate change continues to hog the limelight, habitat loss remains the key threat to biodiversity worldwide. And whilst events like the Australian bushfires obviously contribute to habitat loss, its main cause is land clearing, whether for agriculture, cattle grazing, mining or urbanization. No matter how many politicians deny or try to deviate attention from it, scientists have shown time and time again just how threatening habitat loss is to our planet’s biodiversity.

On the surface, the process seems quite simple. Habitat goes away, animals lose shelter and food. Yet this is just the tip of the iceberg. Many processes take place below the surface, cascading through an ecosystem. So let’s have a look at the manifold effects of habitat loss, and why it’s the greatest threat to biodiversity today.

Read more

The Vital Role of Indigenous Peoples in Forest Conservation

The Amazon rainforest, which houses the largest area of intact forest landscape which lies within indigenous lands (Image Credit: David Evers, CC BY 2.0, Image Cropped)

Importance of Indigenous Peoples’ lands for the conservation of Intact Forest Landscapes (2020) Fa et al., Frontiers in Ecology and the Environment, https://doi.org/10.1002/fee.2148

The Crux

Pristine forests remain not only a home for a huge range of biodiversity, they are also important resources for carbon storage, meaning their protection will become crucial as temperatures rise globally. Yet the term ‘pristine forest’ can be subjective. With this in mind, Peter Popatov et al., defined an IFL (Intact Forest Landscape) as a seamless mosaic of forest and associated treeless ecosystems that do not display obvious human activity or fragmentation. These areas are capable of housing entire species, including those that have expansive ranges.

The intent of this paper was to try and determine what proportion of that land intersects with land owned by Indigenous Peoples, to see how significant a role Indigenous Peoples could play in both conservation of biodiversity and the mitigation of climate change.

Read more

Re-Analysing Forest Biodiversity

The Gribskov Forest in Denmarkj, where this study took place (Image Credit: Malene Thyssen, CC BY-SA 3.0, Image Cropped)

Biodiversity response to forest structure and management: Comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation (2019) Lelli et al., Forest Ecology and Management, https://doi.org/10.1016/j.foreco.2018.09.057

The Crux

The classification of biodiversity is something that has become more and more relevant as the term ‘biodiversity’ has worked its way into the public’s vernacular. How we measure biodiversity can vastly influence our perception of it, and whilst we’ve previously looked at spatial interpretations of biodiversity on EcoMass, today I’m examining a paper that looks at interpretations of biodiversity by species groups.

Species richness (how many species are present in a given place) is often the go-to measurement for biodiversity. But it doesn’t always help when trying to conserve an ecosystem. For instance, we may wish to focus on certain types of species which are rare, or that preserve certain ecosystem functions. This paper looks at the differences in the effect of management on biodiversity, depending on which approach to biodiversity you take.

Read more

An Abridged History of the California Wildfires

California is ablaze, again. So why is this part of the world so notorious for catching fire? (Image Credit: Forest Service, USDA, Public Domain Mark 1.0, Image Cropped)

Recently, I was looking for skiable snow in central Norway when I bumped into a chatty Norwegian man. When I told him I was Californian, he asked why my state was always on fire. The story demanded vocabulary beyond my grasp of the language, so this story is for your benefit, my random friendly Norwegian. This is a story of resource mismanagement, of urbanization, Pocahontas, and a policy that was a bear’s favor.

Read more

Resuscitating Australia’s Floodplains: Environmental Water

On the left, a thriving wetland. The right, an arid forest.

On the left, a thriving wetland. The right, an arid forest. (Image Credit: Sam Perrin, CC BY 2.0)

I’m standing on the dry side of the Murrumbidgee floodplain in country Australia. I say dry side, because whilst I’m standing on the harsh, dusty platform of soil and desiccated leaves that is pretty standard for this area, 15 metres away there’s a thriving wetland environment. It boasts waterbirds, a flock of emus, thirsty kangaroos, and fish. All that’s separating the wetland and dry land on which I stand is a road, only about half a metre above water level.

Read more

Episode 2: The Ents

Image Credit: The Two Towers, 2002 

This week we look at the Ents, of the little known cult comedy Lord of the Rings. Adam really just nerds right out (we get it you read), Dave reveals he doesn’t believe in new Zealand and Sam rediscovers the art of the pun.

Movie History – 0.04.55
Movie Any Good? – 0.16.38
Ent Physiology – 0.21.06
Ent Ecology – 1.01.02
Treebeard vs. Christopher Lee – 1.24.30

Listen to the full episode below. For a more detailed breakdown, head over to Cinematica Animalia.


« Older Entries