Tag Archives: water

Monitoring Freshwater Populations in the Chernobyl Exclusion Zone

Radiation can have extremely negative effects on an individual. But is it as easy to measure its effects on an entire population? (Image Credit: Hnapel, CC BY-SA 4.0, Image Cropped)

Variation in chronic radiation exposure does not drive life history divergence among Daphnia populations across the Chernobyl Exclusion Zone (2019) Goodman et al., Ecology and Evolution, DOI: 10.1002/ece3.4931

The Crux

As anyone who has recently watched HBO’s Chernobyl can tell you, large doses of radiation are capable of doing some pretty serious damage to an organism. But whilst examining the effect of radiation on an individual might be simple, monitoring those effects on a population can be difficult. Whilst radiation negatively effects fitness, it can also help individuals with higher radiation tolerance to reproduce and dominate within the population of a single species, making it difficult to monitor the exact effects of radiation on that population. If a population is filled with only those who were strong enough to survive, you don’t get an idea of the variation in the radiation’s effects.

This week’s researchers tried to break through that problem by looking at different populations of a water flea in Chernobyl’s Exclusion Zone (CEZ) – the area still barred from entry in eastern Europe.

What They Did

The researchers sampled populations of the water flea Daphnia pulex (see below) from 8 lakes within the CEZ, all of which had experienced different doses of radiation since the Chernobyl disaster. Information on how much radiation those lakes were subject to was taken from Ukraine’s radiation databases and water samples collected at the site. The 38 types of Daphnia from the 8 lakes were then transported back to a laboratory and bred for three generations. The survival and reproductive success of this third generation was then modelled against radiation dose.

Did You Know: Daphnia as Study Organisms

Some species are frequently used across different ecological disciplines as model organisms. One example is the genus Daphnia, a genus of water fleas. They have a short life cycle, and can reproduce asexually. This means that scientists have the opportunity to disentangle environmental effects on populations of genetically similar individuals, as well as between populations of different genetic backgrounds.

What They Found

Whilst reproductive success and survival varied between the populations of Daphnia at different lakes, this did not seem to occur as a result of radiation dose. Radiation did not have a pronounced effect on any fitness variable.

Problems?

Daphnia_pulex

The water flea Daphnia, here used to test the effects of radiation on populations (Image Credit: Paul Hebert, CC BY 2.5)

Sample size is of course an issue here. Only having 8 lakes to compare the effects of radiation on populations was always going to make an effect of radiation dose hard to find. It was made more difficult by the fact that the effects of one lake were significantly different to the others, skewing results considerably. This is of course no fault of the authors, and hopefully technology in the future will allow us to expand the data used in these projects.

So What?

It’s important to note here that these results do not necessarily mean that radiation has no effect on Daphnia populations. Radiation is known to have negative effects on individual fitness, so what this study could tell us is that we need to view radiation as an environmental process which acts in concert with a variety of other biotic factors. Perhaps a study which takes into account further environmental variables and more lake populations would be able to further advance the work done in this paper.

The Ecology of a Mermaid

Adam regales us with one of the weirdest stories I’ve ever heard, and in case you were wondering, yes we do talk about how mermaids have sex. Jesus. Also there’s some cool ecology. Like how did mermaids evolve? Was it from a mutated baby tossed overboard? Probably not.

05:19 – Mermaids in Cinema
16:35 – Ecology of the Mermaids
33:25 – Mermaid Copulation (you were warned)
38:07 – The Mermaids vs. Jaws

You can also find us on iTunes and Google Play.

Kath Handasyde: Charisma, Culling and Conservation

Koalas are gorgeous, no doubt. But does their overwhelming charisma mean that we forget about other species?

Koalas are gorgeous, no doubt. But does their overwhelming charisma mean that we forget about other species? (Image Credit: Erik Veland, CC BY-SA 3.0)

Australia plays host to a wonderful range of very endearing species. Tourists come from the world over to get up close with kangaroos or koalas. But the charisma of these animals can often lead to issues, whether it’s prioritisation of resources for them over other more endangered species, or even to the detriment of the species themselves.

Doctor Kath Handasyde of Melbourne University has been working with Australian field wildlife for almost 40 years, and is perhaps the most charismatic teacher I had during my Bachelor’s at the same institute. During my time in Melbourne, I had the chance to talk to Kath about the sometimes problematic role of charismatic species in Australian wildlife conservation.

Read more

Resuscitating Australia’s Floodplains: Environmental Water

On the left, a thriving wetland. The right, an arid forest.

On the left, a thriving wetland. The right, an arid forest. (Image Credit: Sam Perrin, CC BY-SA 4.0)

I’m standing on the dry side of the Murrumbidgee floodplain in country Australia. I say dry side, because whilst I’m standing on the harsh, dusty platform of soil and desiccated leaves that is pretty standard for this area, 15 metres away there’s a thriving wetland environment. It boasts waterbirds, a flock of emus, thirsty kangaroos, and fish. All that’s separating the wetland and dry land on which I stand is a road, only about half a metre above water level.

Read more

The Chilly Cradle of Life

Species richness is much higher in waters near the equator, but do we see that in a phylogenic tree?

Species richness is much higher in waters near the equator, but do we see that in a phylogenetic tree? (Image Credit: Rich Brooks, CC BY 2.0)

An inverse latitudinal gradient in speciation rate for marine fishes (2018) Rabosky et al., Nature  doi:10.1038/s41586-018-0273-1

The Crux

The tropical regions of the Earth are the most species-rich and diverse ecosystems on the planet, with this diversity and species-richness declining as you move further and further from the equator. One hypothesis explaining this is that speciation rates are simply higher in the tropics, meaning that more species are evolving in a given time in the tropics than anywhere else. To test for this, the authors used the largest phylogenetic tree available and analyzed speciation rates (how many new species evolve from older species) per million years.

Read more